Partial words are sequences of characters from an alphabet in which some positions may be marked with a “hole” symbol, . We can create a -substitution mapping this symbol to a subset of the alphabet, so that applying such a substitution to a partial word results in a set of total words (ones without holes). This setup allows us to compress regular languages into smaller partial languages. Deterministic finite automata for such partial languages, referred to as -DFAs, employ a limited non-determinism that can allow them to have lower state complexity than the minimal DFAs for the corresponding total languages. Our paper focuses on algorithms for the construction of minimal partial languages, associated with some -substitution, as well as approximation algorithms for the construction of minimal -DFAs.
Accepté le :
DOI : 10.1051/ita/2017011
Mots clés : Automata and formal languages, regular languages, partial languages, partial words, deterministic finite automata, non-deterministic finite automata
@article{ITA_2017__51_2_99_0, author = {Blanchet-Sadri, Francine and Goldner, K. and Shackleton, A.}, title = {Minimal partial languages and automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {99--119}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/ita/2017011}, zbl = {1382.68185}, mrnumber = {3731540}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2017011/} }
TY - JOUR AU - Blanchet-Sadri, Francine AU - Goldner, K. AU - Shackleton, A. TI - Minimal partial languages and automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2017 SP - 99 EP - 119 VL - 51 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2017011/ DO - 10.1051/ita/2017011 LA - en ID - ITA_2017__51_2_99_0 ER -
%0 Journal Article %A Blanchet-Sadri, Francine %A Goldner, K. %A Shackleton, A. %T Minimal partial languages and automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2017 %P 99-119 %V 51 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2017011/ %R 10.1051/ita/2017011 %G en %F ITA_2017__51_2_99_0
Blanchet-Sadri, Francine; Goldner, K.; Shackleton, A. Minimal partial languages and automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 2, pp. 99-119. doi : 10.1051/ita/2017011. http://www.numdam.org/articles/10.1051/ita/2017011/
A.V. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison–Wesley (1974). | MR | Zbl
J. Amilhastre, P. Janssen and M.-C. Vilarem, FA minimisation heuristics for a class of finite languages. In: 4th International Workshop on Implementing Automata, Potsdam, Germany, edited by O. Boldt and H. Jürgensen. In vol. 2214 of Lect. Notes Comput. Sci. (2001) 1–12. | Zbl
On the state complexity of partial word DFAs. Theoret. Comput. Sci. 578 (2015) 2–12. | DOI | MR | Zbl
, , and ,Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218 (1999) 135–141. | DOI | MR | Zbl
and ,Intersection and union of regular languages and state complexity. Inf. Process. Lett. 43 (1992) 185–190. | DOI | MR | Zbl
,The tractability frontier for NFA minimization. J. Comput. Syst. Sci. 78 (2012) 198–210. | DOI | MR | Zbl
and ,Codes, orderings and partial words. Theoret. Comput. Sci. 329 (2004) 177–202. | DOI | MR | Zbl
,F. Blanchet–Sadri, Algorithmic Combinatorics on Partial Words, Chapman and Hall/CRC Press, Boca Raton, FL (2008). | MR | Zbl
F. Blanchet–Sadri, K. Goldner and A. Shackleton, Minimal partial languages and automata, In tCIAA 2014, 19th Int. Conf. Implementation Appl. Automata, Giessen, Germany, edited by M. Holzer and M. Kutrib. In vol. 8587 of Lect. Notes in Comput. Sci. Springer International Publishing Switzerland (2014) 110–123. | MR | Zbl
The parallel complexity of finite-state automata problems. Inf. Comput. 97 (1992) 1–22. | DOI | MR | Zbl
and ,Regular languages of partial words. Inf. Sci. 268 (2014) 290–304. | DOI | MR | Zbl
, and ,M.J. Fischer and M. S. Paterson, String-matching and other products. In: Complexity of Computation, edited by R.M. Karp. SIAM-AMS Proceedings. Am. Math. Soc. 7 (1974) 113–126. | MR | Zbl
Minimizing nfa’s and regular expressions. J. Comput. Syst. Sci. 73 (2007) 908–923. | DOI | MR | Zbl
and ,B. Groz, S. Maneth and S. Staworko, Deterministic regular expressions in linear time, in PODS 2012, 31th ACM Symp. Principles of Database Syst. (2012) 49–60.
H. Gruber and M. Holzer, Computational complexity of NFA minimization for finite and unary languages. In LATA 2007, 1st International Conference on Language and Automata Theory and Applications, Tarragona, Spain, Technical Report 35/07. Research Group on Mathematical Linguistics, Universitat Rovira i Virgili (2007) 261–272.
M. Holzer, S. Jakobi and M. Wendlandt, On the computational complexity of partial word automata problems, In vol. 304 of NCMA 2014, 6th Workshop on Non-Classical Models for Automata and Applications, Kassel, Germany. Edited by S. Bensch, R. Freund and F. Otto. books@ocg.at, Österreichische Computer Gesellschaft (2014) 131–146.
J. Hopcroft, An n log n algorithm for minimizing states in a finite automaton. Technical report, DTIC Document (1971). | MR | Zbl
Minimal nfa problems are hard. SIAM J. Comput. 22 (1993) 1117–1141. | DOI | MR | Zbl
and ,Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11 (1975) 68–85. | DOI | MR | Zbl
,Languages of partial words - how to obtain them and what properties they have. Grammars 7 (2004) 179–192.
,Restoration of punctured languages and similarity of languages. Math. Logic Quaterly 52 (2006) 20–28. | DOI | MR | Zbl
,The hardness of counting full words compatible with partial words. J. Comput Syst. Sci. 79 (2013) 7–22. | DOI | MR | Zbl
and ,On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20 (1971) 1211–1214. | DOI | Zbl
,A.R. Meyer and L.J. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space. In SWAT 1972, 13th Annual IEEE Symposium on Switching and Automata Theory (1972) 125–129.
G. Rozenberg and A. Salomaa, Handbook of Formal Languages. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997). | MR | Zbl
L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time. In 5th Symposium on Theory of Computing (1973) 1–9. | MR | Zbl
Cité par Sources :