Let be an integer-valued polynomial taking only positive values and let be a fixed positive integer. The aim of this short note is to show, by elementary means, that for any sufficiently large integer there exists such that contains exactly occurrences of the block of size in its digital expansion in base . The method of proof allows to give a lower estimate on the number of “0” resp. “1” symbols in polynomial extractions in the Rudin–Shapiro sequence.
Accepté le :
DOI : 10.1051/ita/2016009
Mots clés : Rudin–Shapiro sequence, automatic sequences, polynomials
@article{ITA_2016__50_1_93_0, author = {Stoll, Thomas}, title = {On digital blocks of polynomial values and extractions in the {Rudin{\textendash}Shapiro} sequence}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {93--99}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016009}, zbl = {1419.11014}, mrnumber = {3518161}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2016009/} }
TY - JOUR AU - Stoll, Thomas TI - On digital blocks of polynomial values and extractions in the Rudin–Shapiro sequence JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 93 EP - 99 VL - 50 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2016009/ DO - 10.1051/ita/2016009 LA - en ID - ITA_2016__50_1_93_0 ER -
%0 Journal Article %A Stoll, Thomas %T On digital blocks of polynomial values and extractions in the Rudin–Shapiro sequence %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 93-99 %V 50 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2016009/ %R 10.1051/ita/2016009 %G en %F ITA_2016__50_1_93_0
Stoll, Thomas. On digital blocks of polynomial values and extractions in the Rudin–Shapiro sequence. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 1, pp. 93-99. doi : 10.1051/ita/2016009. http://www.numdam.org/articles/10.1051/ita/2016009/
J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003). | MR | Zbl
A case study in mathematical research: the Golay–Rudin–Shapiro sequence. Amer. Math. Monthly 103 (1996) 854–869. | DOI | MR | Zbl
and ,Congruences de sommes de chiffres de valeurs polynomiales. Bull. London Math. Soc. 38 (2006) 61–69. | DOI | MR | Zbl
and ,Newman’s phenomenon for generalized Thue–Morse sequences. Discrete Math. 308 (2008) 1191–1208. | DOI | MR | Zbl
and ,Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13 (1967/1968) 259–265. | DOI | MR | Zbl
,M. Lothaire, Applied Combinatorics on Words. Vol. 105 of Encycl. Math. Appl. Cambridge University Press, Cambridge (2005). | MR | Zbl
Prime numbers along Rudin–Shapiro sequences. J. Eur. Math. Soc. 27 (2015) 2595–2642. | DOI | MR | Zbl
and ,On the number of binary digits in a multiple of three. Proc. Amer. Math. Soc. 21 (1969) 719–721. | DOI | MR | Zbl
,The Online Encyclopedia of Integer Sequences (OEIS), edited by N.J.A. Sloane. Available at https://oeis.org/. | Zbl
Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10 (1959) 855–859. | DOI | MR | Zbl
,H.S. Shapiro, Extremal Problems for Polynomials and Power Series. Master thesis, M.I.T. (1951). | MR
The sum of digits of polynomial values in arithmetic progressions. Functiones et Approximatio 47 (2012) 233–239. | MR | Zbl
,Cité par Sources :