Cross-bifix-free sets are sets of words such that no proper prefix of any word is a proper suffix of any other word. In this paper, we introduce a general constructive method for the sets of cross-bifix-free -ary words of fixed length. It enables us to determine a cross-bifix-free words subset which has the property to be non-expandable.
Accepté le :
DOI : 10.1051/ita/2016008
Mots clés : Codes, Motzkin paths
@article{ITA_2016__50_1_81_0, author = {Barcucci, Elena and Bilotta, Stefano and Pergola, Elisa and Pinzani, Renzo and Succi, Jonathan}, title = {Cross-bifix-free sets generation via {Motzkin} paths}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {81--91}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016008}, zbl = {1371.68219}, mrnumber = {3518160}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2016008/} }
TY - JOUR AU - Barcucci, Elena AU - Bilotta, Stefano AU - Pergola, Elisa AU - Pinzani, Renzo AU - Succi, Jonathan TI - Cross-bifix-free sets generation via Motzkin paths JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 81 EP - 91 VL - 50 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2016008/ DO - 10.1051/ita/2016008 LA - en ID - ITA_2016__50_1_81_0 ER -
%0 Journal Article %A Barcucci, Elena %A Bilotta, Stefano %A Pergola, Elisa %A Pinzani, Renzo %A Succi, Jonathan %T Cross-bifix-free sets generation via Motzkin paths %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 81-91 %V 50 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2016008/ %R 10.1051/ita/2016008 %G en %F ITA_2016__50_1_81_0
Barcucci, Elena; Bilotta, Stefano; Pergola, Elisa; Pinzani, Renzo; Succi, Jonathan. Cross-bifix-free sets generation via Motzkin paths. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 1, pp. 81-91. doi : 10.1051/ita/2016008. http://www.numdam.org/articles/10.1051/ita/2016008/
Motzkin numbers. Eur. J. Combin. 19 (1998) 663–675. | DOI | MR | Zbl
,D. Bajic, On construction of cross-bifix-free kernel sets, in Proc. of Conference on 2nd MCM COST 2100 (2007) TD(07)237.
A simple suboptimal construction of cross-bifix-free codes. Cryptogr. Commun. 6 (2014) 27–37. | DOI | Zbl
and ,D. Bajic and J. Stojanovic, Distributed sequences and search process, in Proc. of IEEE International Conference on Communications ICC 2004 (2004) 514–518.
A. Del Lungo, E. Pergola and R. Pinzani, A construction for enumerating -coloured Motzkin paths. Lect. Notes Comput. Sci. 959 (1995) 254–263. | DOI | MR
,R.H. Barker, Group Synchronizing of Binary Digital Systems, Communication theory, London, Butterworth (1953) 273–287.
J. Berstel, D. Perrin and C. Reutenauer, Codes and Automata. Encycl. Math. Appl. Cambridge University Press (2009). | MR | Zbl
Avoiding cross-bifix-free binary words. Acta Inform. 50 (2013) 157–173. | DOI | MR | Zbl
, , and ,A new approach to cross-bifix-free sets. IEEE Trans. Inform. Theory 58 (2012) 4058–4063. | DOI | MR | Zbl
, and ,Non-overlapping codes. IEEE Trans. Inform. Theory 61 (2015) 4890–4894. | DOI | MR | Zbl
.Cross-bifix-free codes within a constant factor of optimality. IEEE Trans. Inform. Theory 59 (2013) 4668–4674. | DOI | MR | Zbl
, , and ,M. Crochemore, C. Hancart and T. Lecroq, Algorithms on Strings. Cambridge University Press (2007). | MR | Zbl
Frame Synchronization Using Distributed Sequences. IEEE Trans. Commun. 48 (2000) 2127–2138. | DOI
and ,Maximun number of words in codes without overlaps. Probl. Inf. Transm. 6 (1970) 355–357. | MR | Zbl
,On th order linear recurrences. Fibonacci Quart. 23 (1985) 290–293. | MR | Zbl
,Binary sequences up to length 40 with best possible autocorrelation function. Electron. Lett. 11 (1975) 507. | DOI
,On the expected duration of a search for a fixed pattern in random data. IEEE Trans. Inform. Theory 29 (1973) 702–704. | DOI | MR | Zbl
,A note on bifix-free sequences. IEEE Trans. Inform. Theory 29 (1973) 704–706. | DOI | MR | Zbl
.On -colored Motzkin words. J. Integer Seq. 7 (2004) 04.2.5. | MR | Zbl
and ,Frame synchronization techniques. IEEE Trans. Commun. 20 (1980) 1204–1213. | DOI
,Cité par Sources :