We study finitely generated monoids consisting of endomorphisms of a free monoid. We give a necessary and sufficient condition for such a monoid to be infinite and show that this condition is decidable. As a special case we discuss the morphism torsion problem.
Accepté le :
DOI : 10.1051/ita/2014028
Mots clés : Free monoid morphism, finiteness problem, decidability
@article{ITA_2015__49_1_61_0, author = {Honkala, Juha}, title = {The finiteness problem for monoids of morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {61--65}, publisher = {EDP-Sciences}, volume = {49}, number = {1}, year = {2015}, doi = {10.1051/ita/2014028}, mrnumber = {3342173}, zbl = {1314.20045}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2014028/} }
TY - JOUR AU - Honkala, Juha TI - The finiteness problem for monoids of morphisms JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2015 SP - 61 EP - 65 VL - 49 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2014028/ DO - 10.1051/ita/2014028 LA - en ID - ITA_2015__49_1_61_0 ER -
%0 Journal Article %A Honkala, Juha %T The finiteness problem for monoids of morphisms %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2015 %P 61-65 %V 49 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2014028/ %R 10.1051/ita/2014028 %G en %F ITA_2015__49_1_61_0
Honkala, Juha. The finiteness problem for monoids of morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 1, pp. 61-65. doi : 10.1051/ita/2014028. http://www.numdam.org/articles/10.1051/ita/2014028/
J. Berstel and C. Reutenauer, Noncommutative Rational Series with Applications. Cambridge University Press (2011). | MR | Zbl
On the decidability of semigroup freeness. RAIRO: ITA 46 (2012) 355–399. | Numdam | MR | Zbl
and ,La finitude des représentations linéaires des semi-groupes est décidable. J. Algebra 52 (1978) 437–459. | DOI | MR | Zbl
,L. Kari, G. Rozenberg and A. Salomaa, L systems. In vol. 1 of Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer (1997) 253–328. | MR | Zbl
On finite semigroups of matrices. Theoret. Comput. Sci. 5 (1977) 101–111. | DOI | MR | Zbl
and ,The Burnside problem for semigroups. J. Algebra 34 (1975) 292–299. | DOI | MR | Zbl
and ,On exponential growth in Lindenmayer systems. Indag. Math. 35 (1973) 23–30. | DOI | MR | Zbl
,Cité par Sources :