The finiteness problem for monoids of morphisms
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 1, pp. 61-65.

We study finitely generated monoids consisting of endomorphisms of a free monoid. We give a necessary and sufficient condition for such a monoid to be infinite and show that this condition is decidable. As a special case we discuss the morphism torsion problem.

Reçu le :
Accepté le :
DOI : 10.1051/ita/2014028
Classification : 20M05, 68Q45
Mots-clés : Free monoid morphism, finiteness problem, decidability
Honkala, Juha 1

1 Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
@article{ITA_2015__49_1_61_0,
     author = {Honkala, Juha},
     title = {The finiteness problem for monoids of morphisms},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {61--65},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/ita/2014028},
     mrnumber = {3342173},
     zbl = {1314.20045},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2014028/}
}
TY  - JOUR
AU  - Honkala, Juha
TI  - The finiteness problem for monoids of morphisms
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2015
SP  - 61
EP  - 65
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2014028/
DO  - 10.1051/ita/2014028
LA  - en
ID  - ITA_2015__49_1_61_0
ER  - 
%0 Journal Article
%A Honkala, Juha
%T The finiteness problem for monoids of morphisms
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2015
%P 61-65
%V 49
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita/2014028/
%R 10.1051/ita/2014028
%G en
%F ITA_2015__49_1_61_0
Honkala, Juha. The finiteness problem for monoids of morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 1, pp. 61-65. doi : 10.1051/ita/2014028. http://www.numdam.org/articles/10.1051/ita/2014028/

J. Berstel and C. Reutenauer, Noncommutative Rational Series with Applications. Cambridge University Press (2011). | MR | Zbl

J. Cassaigne and F. Nicolas, On the decidability of semigroup freeness. RAIRO: ITA 46 (2012) 355–399. | Numdam | MR | Zbl

G. Jacob, La finitude des représentations linéaires des semi-groupes est décidable. J. Algebra 52 (1978) 437–459. | DOI | MR | Zbl

L. Kari, G. Rozenberg and A. Salomaa, L systems. In vol. 1 of Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Springer (1997) 253–328. | MR | Zbl

A. Mandel and I. Simon, On finite semigroups of matrices. Theoret. Comput. Sci. 5 (1977) 101–111. | DOI | MR | Zbl

R. Mcnaughton and Y. Zalcstein, The Burnside problem for semigroups. J. Algebra 34 (1975) 292–299. | DOI | MR | Zbl

A. Salomaa, On exponential growth in Lindenmayer systems. Indag. Math. 35 (1973) 23–30. | DOI | MR | Zbl

Cité par Sources :