In this paper we address the two-dimensional knapsack problem with unloading constraints: we have a bin B, and a list L of n rectangular items, each item with a class value in {1,...,C}. The problem is to pack a subset of L into B, maximizing the total profit of packed items, where the packing must satisfy the unloading constraint: while removing one item a, items with higher class values can not block a. We present a (4 + ϵ)-approximation algorithm when the bin is a square. We also present (3 + ϵ)-approximation algorithms for two special cases of this problem.
Mots clés : knapsack problem, approximation algorithms, unloading/loading constraints
@article{ITA_2013__47_4_315_0, author = {Mois\'es da Silveira, Jefferson Luiz and Xavier, Eduardo Candido and Miyazawa, Fl\'avio Keidi}, title = {A note on a two dimensional knapsack problem with unloading constraints}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {315--324}, publisher = {EDP-Sciences}, volume = {47}, number = {4}, year = {2013}, doi = {10.1051/ita/2013037}, mrnumber = {3132294}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2013037/} }
TY - JOUR AU - Moisés da Silveira, Jefferson Luiz AU - Xavier, Eduardo Candido AU - Miyazawa, Flávio Keidi TI - A note on a two dimensional knapsack problem with unloading constraints JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2013 SP - 315 EP - 324 VL - 47 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2013037/ DO - 10.1051/ita/2013037 LA - en ID - ITA_2013__47_4_315_0 ER -
%0 Journal Article %A Moisés da Silveira, Jefferson Luiz %A Xavier, Eduardo Candido %A Miyazawa, Flávio Keidi %T A note on a two dimensional knapsack problem with unloading constraints %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2013 %P 315-324 %V 47 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2013037/ %R 10.1051/ita/2013037 %G en %F ITA_2013__47_4_315_0
Moisés da Silveira, Jefferson Luiz; Xavier, Eduardo Candido; Miyazawa, Flávio Keidi. A note on a two dimensional knapsack problem with unloading constraints. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 4, pp. 315-324. doi : 10.1051/ita/2013037. http://www.numdam.org/articles/10.1051/ita/2013037/
[1] On the two-dimensional knapsack problem. Oper. Res. Lett. 32 (2004) 5-14. | Zbl
and ,[2] Performance bounds for level-oriented two dimensional packing algorithms. SIAM J. Comput. 9 (1980) 808-826. | MR | Zbl
, , and ,[3] Two dimensional knapsack with unloading constraints, in VI Latin American Algorithms, Graphs and Optimization Symposium (LAGOS 2011), Electronic Notes in Discrete Math. (2011) 1-4. | Zbl
, and ,[4] Heuristics for the strip packing problem with unloading constraints. Comput. Oper. Res. 40 (2013) 991-1003. | MR
, and ,[5] A branch-and-cut approach for the vehicle routing problem with two-dimensional loading constraints, in Simpósio Brasileiro de Pesquisa Operacional - SBPO, Porto Seguro, Brazil (2009).
, , and ,[6] A tabu search heuristic for the vehicle routing problem with two-dimensional loading constraints. Networks 51 (2007) 4-18. | MR | Zbl
, , and ,[7] Approximating the orthogonal knapsack problem for hypercubesi in ICALP (1), vol. 4051 of Lect. Notes Comput. Sci. (2006) 238-249. | MR | Zbl
,[8] Absolute approximation ratios for packing rectangles into bins. J. Sched. (2010). | MR | Zbl
and ,[9] Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22 (1975) 463-468. | MR | Zbl
and ,[10] J-J. S-González and D. Vigo, An exact approach for the vehicle routing problem with two-dimensional loading constraints. Transport. Sci. 41 (2007) 253-264.
,[11] How to maximize the total area of rectangles packed into a rectangle. Technical Report 0908. Christian-Albrechts-Universität zu kiel, Italy (2009).
and ,[12] A polynomial time approximation scheme for the square packing problem, in Proc. of the Integer Programming and Combinatorial Optimization, vol. 5035, in Lect. Note Comput. Sci. Springer Berlin, Heidelberg (2008) 184-198. | MR | Zbl
and ,[13] On rectangle packing: maximizing benefits, in Proc. of the 15th ACM-SIAM Symposium on Discrete Algorithms. Society for Industial and Applied Mathematics, Philadephia, PA, USA (2004) 204-213. | MR
and ,[14] Abordagens para problemas de carregamento de contêiners com considerações de múltiplos destinos. Gestão & Produção. 18 (2011).
, and ,[15] Mip-based approaches for the container loading problem with multi-drop constraints. Ann. Oper. Res. 199 (2012) 51-75. | MR | Zbl
, and ,[16] A guided tabu search for the vehicle routing problem with two-dimensional loading constraints. Eur. J. Oper. Res. 195 (2009) 729-743. | Zbl
, and ,Cité par Sources :