In this paper, we define k-counting automata as recognizers for ω-languages, i.e. languages of infinite words. We prove that the class of ω-languages they recognize is a proper extension of the ω-regular languages. In addition we prove that languages recognized by k-counting automata are closed under Boolean operations. It remains an open problem whether or not emptiness is decidable for k-counting automata. However, we conjecture strongly that it is decidable and give formal reasons why we believe so.
Mots-clés : ω-automata, extensions to regularω-languages, closure under boolean operations, emptiness problem, infinite hierarchy ofω-languages
@article{ITA_2012__46_4_461_0, author = {Allred, Jo\"el and Ultes-Nitsche, Ulrich}, title = {$k$-counting automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {461--478}, publisher = {EDP-Sciences}, volume = {46}, number = {4}, year = {2012}, doi = {10.1051/ita/2012021}, zbl = {1279.68126}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2012021/} }
TY - JOUR AU - Allred, Joël AU - Ultes-Nitsche, Ulrich TI - $k$-counting automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 461 EP - 478 VL - 46 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2012021/ DO - 10.1051/ita/2012021 LA - en ID - ITA_2012__46_4_461_0 ER -
%0 Journal Article %A Allred, Joël %A Ultes-Nitsche, Ulrich %T $k$-counting automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 461-478 %V 46 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2012021/ %R 10.1051/ita/2012021 %G en %F ITA_2012__46_4_461_0
Allred, Joël; Ultes-Nitsche, Ulrich. $k$-counting automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 4, pp. 461-478. doi : 10.1051/ita/2012021. http://www.numdam.org/articles/10.1051/ita/2012021/
[1] Defining liveness. Inf. Process. Lett. 21 (1985) 181-185. | MR | Zbl
and ,[2] Beyond ω-regular languages, in Proc. STACS, LIPIcs, edited by J.-Y. Marion and T. Schwentick. Schloss Dagstuhl - Leibniz-Zentrum für Informatik 5 (2010) 11-16. | MR | Zbl
,[3] Boundedness in languages of infinite words. Unpublished manuscript. Extended version of M. Bojanczyk and T. Colcombet, Bounds in ω-Regularity, in LICS (2006) 285-296.
and ,[4] Two-variable logic on data words. ACM Trans. Comput. Logic 12 (2011) 27 :1-27 :26. | MR
, , , and ,[5] On a decision method in restricted second order arithmetic, in Proc. of the International Congress on Logic, Methodology and Philosophy of Science 1960, edited by E. Nagel et al. Stanford University Press (1962) 1-11. | MR | Zbl
,[6] Blind counter automata on ω-words. Fundam. Inform. 83 (2008) 51-64. | MR | Zbl
and ,[7] Turing machines with restricted memory access. Inf. Control 9 (1966) 364-379. | MR | Zbl
,[8] Algorithms for determining relative star height and star height. Inf. Comput. 78 (1988) 124-169. | MR | Zbl
,[9] Introduction to Automata Theory, Languages and Computation. Addison Wesley, Pearson Education (2006). | MR | Zbl
, and ,[10] Parallel program schemata. J. Comput. Syst. Sci. 3 (1969) 147-195. | MR | Zbl
and ,[11] Computer-Aided Verification of Coordinating Processes, 1st edition. Princeton University Press, Princeton, New Jersey (1994). | MR | Zbl
,[12] An algorithm for the general petri net reachability problem, in Proc of the 13th Annual ACM Symposium on Theory of Computing, STOC'81. New York, USA, ACM (1981) 238-246. | Zbl
,[13] Testing and generating infinite sequences by a finite automaton. Inf. Control 9 (1966) 521-530. | MR | Zbl
,[14] Recursive unsolvability of post's problem of “tag” and other topics in theory of turing machines. Ann. Math. 74 (1961) 437-455. | MR | Zbl
,[15] Infinite sequences and infinite machines, in AIEE Proc. of the 4th Annual Symposium on Switching Theory and Logical Design (1963) 3-16.
,[16] Kommunikation mit Automaten. Ph.D. thesis, Rheinisch-Westfälisches Institut für instrumentelle Mathematik an der Universität Bonn (1962). | MR
,[17] Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc. 74 (1953) 358-366. | MR | Zbl
,[18] Automata on infinite objects, in Formal Models and Semantics, edited by J. van Leeuwen. Handbook of Theoret. Comput. Sci. B (1990) 133-191. | MR | Zbl
,[19] A power-set construction for reducing Büchi automata to non-determinism degree two. Inform. Process. Lett. 101 (2007) 107-111. | MR | Zbl
,[20] Improved verification of linear-time properties within fairness - weakly continuation-closed behaviour abstractions computed from trace reductions. Software Testing, Verification and Reliability 13 (2003) 241-255.
and ,[21] An automata-theoretic approach to automatic program verification, in Proc. of the 1st Symposium on Logic in Computer Science. Cambridge (1986).
and ,[22] Reasoning about infinite computations. Inform. Comput. 115 (1994) 1-37. | MR | Zbl
and ,Cité par Sources :