We investigate the possibility of extending Chrobak normal form to the probabilistic case. While in the nondeterministic case a unary automaton can be simulated by an automaton in Chrobak normal form without increasing the number of the states in the cycles, we show that in the probabilistic case the simulation is not possible by keeping the same number of ergodic states. This negative result is proved by considering the natural extension to the probabilistic case of Chrobak normal form, obtained by replacing nondeterministic choices with probabilistic choices. We then propose a different kind of normal form, namely, cyclic normal form, which does not suffer from the same problem: we prove that each unary probabilistic automaton can be simulated by a probabilistic automaton in cyclic normal form, with at most the same number of ergodic states. In the nondeterministic case there are trivial simulations between Chrobak normal form and cyclic normal form, preserving the total number of states in the automata and in their cycles.
Mots-clés : unary languages, normal form, probabilistic automata
@article{ITA_2012__46_4_495_0, author = {Bianchi, Maria Paola and Pighizzini, Giovanni}, title = {Normal forms for unary probabilistic automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {495--510}, publisher = {EDP-Sciences}, volume = {46}, number = {4}, year = {2012}, doi = {10.1051/ita/2012017}, mrnumber = {3107861}, zbl = {1279.68132}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2012017/} }
TY - JOUR AU - Bianchi, Maria Paola AU - Pighizzini, Giovanni TI - Normal forms for unary probabilistic automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 495 EP - 510 VL - 46 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2012017/ DO - 10.1051/ita/2012017 LA - en ID - ITA_2012__46_4_495_0 ER -
%0 Journal Article %A Bianchi, Maria Paola %A Pighizzini, Giovanni %T Normal forms for unary probabilistic automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 495-510 %V 46 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2012017/ %R 10.1051/ita/2012017 %G en %F ITA_2012__46_4_495_0
Bianchi, Maria Paola; Pighizzini, Giovanni. Normal forms for unary probabilistic automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 4, pp. 495-510. doi : 10.1051/ita/2012017. http://www.numdam.org/articles/10.1051/ita/2012017/
[1] On the size of unary probabilistic and nondeterministic automata. Fundamenta Informaticae 112 (2011) 119-135. | MR | Zbl
, , and ,[2] Finite automata and unary languages, Theoret. Comput. Sci. 47 (1986) 149-158; Erratum, Theoret. Comput. 302 (2003) 497-498. | MR | Zbl
,[3] Magic numbers in the state hierarchy of finite automata. Inf. Comput. 205 (2001) 1652-1670. | MR | Zbl
,[4] Probabilistic and Nondeterministic Unary Automata, in Proc. of MFCS. Lect. Notes Comput. Sci. 2757 (2003) 460-469. | MR | Zbl
,[5] Markov Chains Theory and Applications, edited by J. Wiley & Sons, Inc. (1976). | MR | Zbl
and ,[6] The structure and complexity of minimal nfa's over a unary alphabet. Int. J. Found. Comput. Sci. 2 (1991) 163-182. | MR | Zbl
, and ,[7] Regularity of One-Letter Languages Acceptable by 2-Way Finite Probabilistic Automata, in Proc of FCT. Lect. Notes Comput. Sci. 529 (1991) 287-296. | MR | Zbl
,[8] Optimal simulations between unary automata. SIAM J. Comput. 30 (2001) 1976-1992. | MR | Zbl
and ,[9] Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata. RAIRO-Theor. Inf. Appl. 5 (2001) 477-490. | Numdam | MR | Zbl
, and ,[10] Tight bounds on the simulation of unary probabilistic automata by deterministic automata. J. Automata, Languages and Combinatorics 6 (2001) 481-492. | MR | Zbl
and ,[11] Introduction to Probabilistic Automata. Academic Press, New York (1971). | MR | Zbl
,[12] Probabilistic automata. Inf. Control 6 (1963) 230-245. | Zbl
,[13] Non-negative Matrices and Markov Chains, 2nd edition. Springer-Verlag (1981). | MR | Zbl
,[14] Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109 (2009) 1010-1014. | MR | Zbl
,Cité par Sources :