The infinite Post Correspondence Problem (ωPCP) was shown to be undecidable by Ruohonen (1985) in general. Blondel and Canterini [Theory Comput. Syst. 36 (2003) 231-245] showed that ωPCP is undecidable for domain alphabets of size 105, Halava and Harju [RAIRO-Theor. Inf. Appl. 40 (2006) 551-557] showed that ωPCP is undecidable for domain alphabets of size 9. By designing a special coding, we delete a letter from Halava and Harju's construction. So we prove that ωPCP is undecidable for domain alphabets of size 8.
Mots-clés : ωPCP, semi-Thue system, undecidable, theory of computation
@article{ITA_2012__46_3_451_0, author = {Dong, Jing and Liu, Qinghui}, title = {Undecidability of infinite post correspondence problem for instances of size 8}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {451--457}, publisher = {EDP-Sciences}, volume = {46}, number = {3}, year = {2012}, doi = {10.1051/ita/2012015}, mrnumber = {2981678}, zbl = {1257.03069}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2012015/} }
TY - JOUR AU - Dong, Jing AU - Liu, Qinghui TI - Undecidability of infinite post correspondence problem for instances of size 8 JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 451 EP - 457 VL - 46 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2012015/ DO - 10.1051/ita/2012015 LA - en ID - ITA_2012__46_3_451_0 ER -
%0 Journal Article %A Dong, Jing %A Liu, Qinghui %T Undecidability of infinite post correspondence problem for instances of size 8 %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 451-457 %V 46 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2012015/ %R 10.1051/ita/2012015 %G en %F ITA_2012__46_3_451_0
Dong, Jing; Liu, Qinghui. Undecidability of infinite post correspondence problem for instances of size 8. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 3, pp. 451-457. doi : 10.1051/ita/2012015. http://www.numdam.org/articles/10.1051/ita/2012015/
[1] Undecidable problems for probabilistic automata of fixed dimension. Theor. Comput. Syst. 36 (2003) 231-245. | MR | Zbl
and ,[2] The (generalized) Post Correspondence Problem with lists consisting of two words is decidable. Theoret. Comput. Sci. 21 (1982) 119-144. | MR | Zbl
, and ,[3] Undecibability of infinite Post Correspondence Problem for instances of size 9. RAIRO-Theor. Inf. Appl. 40 (2006) 551-557. | Numdam | MR | Zbl
and ,[4] Binary (generalized) Post Correspondence Problem. Theoret. Comput. Sci. 276 (2002) 183-204. | MR | Zbl
, and ,[5] Decision problems for semi-Thue systems with a few rules. Theoret. Comput. Sci. 330 (2005) 145-169. | MR | Zbl
and ,[6] A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc. 52 (1946) 264-268. | MR | Zbl
,[7] Reversible machines and Posts Correspondence Problem for biprefix morphisms. J. Inform. Process. Cybernet.EIK 21 (1985) 579-595. | MR | Zbl
,Cité par Sources :