We study the avoidance of Abelian powers of words and consider three reasonable generalizations of the notion of Abelian power to fractional powers. Our main goal is to find an Abelian analogue of the repetition threshold, i.e., a numerical value separating k-avoidable and k-unavoidable Abelian powers for each size k of the alphabet. We prove lower bounds for the Abelian repetition threshold for large alphabets and all definitions of Abelian fractional power. We develop a method estimating the exponential growth rate of Abelian-power-free languages. Using this method, we get non-trivial lower bounds for Abelian repetition threshold for small alphabets. We suggest that some of the obtained bounds are the exact values of Abelian repetition threshold. In addition, we provide upper bounds for the growth rates of some particular Abelian-power-free languages.
Mots clés : repetition threshold, formal languages, avoidable repetitions, abelian powers
@article{ITA_2012__46_1_147_0, author = {Samsonov, Alexey V. and Shur, Arseny M.}, title = {On abelian repetition threshold}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {147--163}, publisher = {EDP-Sciences}, volume = {46}, number = {1}, year = {2012}, doi = {10.1051/ita/2011127}, mrnumber = {2904967}, zbl = {1279.68240}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2011127/} }
TY - JOUR AU - Samsonov, Alexey V. AU - Shur, Arseny M. TI - On abelian repetition threshold JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2012 SP - 147 EP - 163 VL - 46 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2011127/ DO - 10.1051/ita/2011127 LA - en ID - ITA_2012__46_1_147_0 ER -
%0 Journal Article %A Samsonov, Alexey V. %A Shur, Arseny M. %T On abelian repetition threshold %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2012 %P 147-163 %V 46 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2011127/ %R 10.1051/ita/2011127 %G en %F ITA_2012__46_1_147_0
Samsonov, Alexey V.; Shur, Arseny M. On abelian repetition threshold. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 147-163. doi : 10.1051/ita/2011127. http://www.numdam.org/articles/10.1051/ita/2011127/
[1] The number of ternary words avoiding Abelian cubes grows exponentially. J. Integer Seq. 7 (2004) 13 (electronic only). | MR | Zbl
, and ,[2] Uniformly growing k-th power free homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | MR | Zbl
,[3] On the number of Abelian square-free words on four letters. Discrete Appl. Math. 81 (1998) 155-167. | MR | Zbl
,[4] On Dejean's conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | MR | Zbl
,[5] Automata and forbidden words. Inf. Process. Lett. 67 (1998) 111-117. | MR
, and ,[6] The number of binary words avoiding Abelian fourth powers grows exponentially. Theoret. Comput. Sci. 319 (2004) 441-446. | MR | Zbl
,[7] A proof of Dejean's conjecture. Math. Comput. 80 (2011) 1063-1070. | Zbl
and ,[8] Sur un théorème de Thue. J. Comb. Th. (A) 13 (1972) 90-99. | MR | Zbl
,[9] Strongly non-repetitive sequences and progression-free sets. J. Comb. Th. (A) 27 (1979) 181-185. | MR | Zbl
,[10] Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961) 221-264. | MR | Zbl
,[11] Abelian squares are avoidable on 4 letters, in Proc. ICALP'92. Lect. Notes Comput. Sci. 623 (1992) 41-52. | MR
,[12] A powerful abelian square-free substitution over 4 letters. Theoret. Comput. Sci. 410 (2009) 3893-3900. | MR | Zbl
,[13] Combinatorics on words - suppression of unfavorable factors in pattern avoidance. TMJ 11 (2010). Available at http://www.mathematica-journal.com/issue/v11i3/Keranen.html consulted in November 2011.
,[14] Last cases of Dejean's conjecture. Theoret. Comput. Sci. 412 (2011) 3010-3018; Combinatorics on Words (WORDS 2009), 7th International Conference on Words. | MR | Zbl
,[15] Comparing complexity functions of a language and its extendable part. RAIRO-Theor. Inf. Appl. 42 (2008) 647-655. | Numdam | MR | Zbl
,[16] Growth rates of complexity of power-free languages. Theoret. Comput. Sci. 411 (2010) 3209-3223. | MR | Zbl
,[17] Über unendliche Zeichenreihen. Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl. Christiana 7 (1906) 1-22. | JFM
,Cité par Sources :