A word u defined over an alphabet is c-balanced (c ∈ ) if for all pairs of factors v, w of u of the same length and for all letters a ∈ , the difference between the number of letters a in v and w is less or equal to c. In this paper we consider a ternary alphabet = {L, S, M} and a class of substitutions defined by (L) = LpS, (S) = M, (M) = Lp-1S where p > 1. We prove that the fixed point of , formally written as (L), is 3-balanced and that its abelian complexity is bounded above by the value 7, regardless of the value of p. We also show that both these bounds are optimal, i.e. they cannot be improved.
Mots clés : balance property, abelian complexity, substitution, ternary word
@article{ITA_2010__44_3_313_0, author = {Turek, Ond\v{r}ej}, title = {Balances and abelian complexity of a certain class of infinite ternary words}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {313--337}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/ita/2010017}, mrnumber = {2761522}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2010017/} }
TY - JOUR AU - Turek, Ondřej TI - Balances and abelian complexity of a certain class of infinite ternary words JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2010 SP - 313 EP - 337 VL - 44 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2010017/ DO - 10.1051/ita/2010017 LA - en ID - ITA_2010__44_3_313_0 ER -
%0 Journal Article %A Turek, Ondřej %T Balances and abelian complexity of a certain class of infinite ternary words %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2010 %P 313-337 %V 44 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2010017/ %R 10.1051/ita/2010017 %G en %F ITA_2010__44_3_313_0
Turek, Ondřej. Balances and abelian complexity of a certain class of infinite ternary words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 3, pp. 313-337. doi : 10.1051/ita/2010017. http://www.numdam.org/articles/10.1051/ita/2010017/
[1] Codages de rotations et phénomènes d'autosimilarité. J. Théor. Nombres Bordeaux 14 (2002) 351-386. | Zbl
,[2] Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 307 (2003) 47-75. | Zbl
,[3] Sturmian Jungle (or Garden?) on Multiliteral Alphabets. RAIRO: Theoret. Informatics Appl (to appear).
, and ,[4] Combinatorial and Arithmetical Properties of Infinite Words Associated with Quadratic Non-simple Parry Numbers. RAIRO: Theoret. Informatics Appl. 41 3 (2007) 307-328. | Zbl
, and ,[5] Balance properties of multi-dimensional words. Theoret. Comput. Sci. 273 (2002) 197-224. | Zbl
and ,[6] Recurrence in infinite words, in Proc. STACS, LNCS Dresden (Allemagne) 2010, Springer (2001) 1-11. | Zbl
,[7] Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. | Zbl
, and ,[8] Sequences with minimal block growth. Math. Syst. Th. 7 (1973) 138-153. | Zbl
and ,[9] Recurrent words with constant Abelian complexity. Adv. Appl. Math. doi:10.1016/j.aam.2010.05.001 (2010).
and ,[10] Substitutions et β-systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | Zbl
,[11] Additive and multiplicative properties of point-sets based on beta-integers. Theor. Comp. Sci. 303 (2003) 491-516. | Zbl
, and ,[12] Factor complexity of infinite words associated with non-simple Parry numbers. Integers - Electronic Journal of Combinatorial Number Theory (2009) 281-310. | Zbl
and ,[13] Algebraic combinatorics on words. Cambridge University Press (2002).
,[14] Symbolic dynamics. Am. J. Math. 60 (1938) 815-866. | JFM
and ,[15] Symbolic dynamics II. Sturmian Trajectories. Am. J. Math. 62 (1940) 1-42. | JFM
and ,[16] Balance and Abelian Complexity of the Tribonacci word. Adv. Appl. Math. 45 (2010) 212-231. | Zbl
, , ,[17] Abelian Complexity in Minimal Subshifts. J. London Math. Soc. (to appear).
, , ,[18] Groups, tilings and finite state automata. AMS Colloquium Lecture Notes (1989).
,[19] Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO: Theoret. Informatics Appl. 41 2 (2007) 123-135. | Zbl
,[20] Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 787-805. | Zbl
,Cité par Sources :