We study hybrid systems with strong resets from the perspective of formal language theory. We define a notion of hybrid regular expression and prove a Kleene-like theorem for hybrid systems. We also prove the closure of these systems under determinisation and complementation. Finally, we prove that the reachability problem is undecidable for synchronized products of hybrid systems.
Mots-clés : hybrid systems with strong resets, formal language theory
@article{ITA_2010__44_1_79_0, author = {Brihaye, Thomas and Bruy\`ere, V\'eronique and Render, Elaine}, title = {Formal language properties of hybrid systems with strong resets}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {79--111}, publisher = {EDP-Sciences}, volume = {44}, number = {1}, year = {2010}, doi = {10.1051/ita/2010006}, mrnumber = {2604936}, zbl = {1184.68309}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2010006/} }
TY - JOUR AU - Brihaye, Thomas AU - Bruyère, Véronique AU - Render, Elaine TI - Formal language properties of hybrid systems with strong resets JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2010 SP - 79 EP - 111 VL - 44 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2010006/ DO - 10.1051/ita/2010006 LA - en ID - ITA_2010__44_1_79_0 ER -
%0 Journal Article %A Brihaye, Thomas %A Bruyère, Véronique %A Render, Elaine %T Formal language properties of hybrid systems with strong resets %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2010 %P 79-111 %V 44 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2010006/ %R 10.1051/ita/2010006 %G en %F ITA_2010__44_1_79_0
Brihaye, Thomas; Bruyère, Véronique; Render, Elaine. Formal language properties of hybrid systems with strong resets. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 1, pp. 79-111. doi : 10.1051/ita/2010006. http://www.numdam.org/articles/10.1051/ita/2010006/
[1] Automata for modeling real-time systems. In ICALP'90: Automata, Languages, and Programming. Lect. Notes Comput. Sci. 443 (1990) 322-335. | Zbl
and ,[2] A theory of timed automata. Theoret. Comput. Sci. 126 (1994) 183-235. | Zbl
and ,[3] Decision problems for timed automata: A survey. In SFM'04: School on Formal Methods. Lect. Notes Computer Sci. 3185 (2004) 1-24. | Zbl
and ,[4] Model-checking in dense real-time. Inform. Comput. 104 (1993) 2-34. | Zbl
, and ,[5] The algorithmic analysis of hybrid systems. Theoret. Comput. Sci. 138 (1995) 3-34. | Zbl
, , , , , , , and ,[6] Event-clock automata: a determinizable class of timed automata. Theoret. Comput. Sci. 211 (1999) 253-273. | Zbl
, and ,[7] Optimal paths in weighted timed automata. In HSCC'01: Hybrid Systems: Computation and Control. Lect. Notes Comput. Sci. 203 (2001) 449-62. | Zbl
, and ,[8] A kleene theorem for timed automata. In LICS (1997) 160-171.
, and ,[9] Pumping lemmas for timed automata. In Foundations of software science and computation structures (Lisbon, 1998). Lect. Notes Comput. Sci. 1378 (1998) 81-94. | Zbl
,[10] Minimum-cost reachability for priced timed automata. In HSCC'01: Hybrid Systems: Computation and Control. Lect. Notes Comput. Sci. 2034 (2001) 147-161. | Zbl
, , , , , and ,[11] Characterization of the expressive power of silent transitions in timed automata. Fund. Inform. 36 (1998) 145-182. | Zbl
, , and ,[12] A Kleene/büchi-like theorem for clock languages. J. Autom. Lang. Comb. 7 (2002) 167-186. | Zbl
and ,[13] Control in o-minimal hybrid systems. In LICS'06: Logic Comput. Sci. 367-378. IEEE Computer Society Press (2006).
, and ,[14] Weighted o-minimal hybrid systems are more decidable than weighted timed automata! In LFCS'07: Logical Foundations of Computer Science. Lect. Notes Comput. Sci. 4514 (2007) 69-83. | Zbl
, and ,[15] Undecidability results for timed automata with silent transitions. Research Report LSV-07-12, Laboratoire Spécification et Vérification, ENS Cachan, France (2007) 22 p. | Zbl
, and ,[16] Average-price and reachability-price games on hybrid automata with strong resets. In FORMATS'08: Formal Modelling and Analysis of Timed Systems. Lect. Notes Comput. Sci. 5215 (2008). | Zbl
, , , and ,[17] A note on the undecidability of the reachability problem for o-minimal dynamical systems. Mathematical Logic Quarterly 52 (2006) 165-170. | Zbl
,[18] Verification and Control of O-Minimal Hybrid Systems and Weighted Timed Automata, thèse de doctorat. Université Mons-Hainaut, Belgium (2006).
,[19] On the expressiveness and decidability of o-minimal hybrid systems. J. Complexity 21 (2005) 447-478. | Zbl
and ,[20] On o-minimal hybrid systems. In HSCC'04: Hybrid Systems: Computation and Control. Lect. Notes Comput. Sci. 2993 (2004) 219-233. | Zbl
, , and ,[21] Logic and p-recognizable sets of integers. Journées Montoises, Mons (1992). Bull. Belg. Math. Soc. Simon Stevin 1 (1994) 191-238. | Zbl
, , and .[22] Composing semi-algebraic o-minimal automata. In HSCC'07: Hybrid Systems: Computation and Control. Lect. Notes Comput. Sci. 4416 (2007) 668-671. | Zbl
, , and ,[23] Model theory. Studies in Logic and the Foundations of Mathematics, Vol. 73. North-Holland Publishing Co., Amsterdam (1973). | Zbl
and ,[24] Design and synthesis of synchronous skeletons using branching-time temporal logic. In Proc. 3rd Workshop Logics of Programs (LOP'81). Lect. Notes Comput. Sci. 131 (1981) 52-71. | Zbl
and ,[25] Kleene theorems for event-clock automata. In FCT'99: Fundamentals of Computation Theory. Lect. Notes Comput. Sci. 1684 (1999) 215-225. | Zbl
,[26] Real-time automata. J. Autom. Lang. Comb. 6 (2001) 3-24. | Zbl
,[27] Tame Topology and O-Minimal Structures, London Mathematical Society Lecture Note Series 248. Cambridge University Press (1998). | Zbl
,[28] Undecidable problems about timed automata. In FORMATS'06: Formal Modeling and Analysis of Timed Systems. Lect. Notes Comput. Sci. 4202 (2006) 187-199. | Zbl
,[29] The theory of hybrid automata. In LICS'96: Logic in Computer Science. IEEE Computer Society Press (1996) 278-292. | Zbl
,[30]
, and H.W.-Toi, A user guide to HyTech. In TACAS'95: Tools and Algorithms for the Construction and Analysis of Systems. Lect. Notes Comput. Sci. 1019 (1995) 41-71.[31] What's decidable about hybrid automata. J. Comput. System Sci. 57 (1998) 94-124. | Zbl
, , and ,[32] Timed automata and recognizability. Inform. Process. Lett. 65 (1998) 313-318. | Zbl
,[33] Model theory, Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press (1993). | Zbl
,[34] A shorter model theory. Cambridge University Press (1997). | Zbl
,[35] Definable sets in ordered structures. II. Trans. Amer. Math. Soc. 295 (1986) 593-605. | Zbl
, and ,[36] A new class of decidable hybrid systems. In HSCC'99: Hybrid Systems: Computation and Control. Lect. Notes Comput. Sci. 1569 (1999) 137-151. | Zbl
, and ,[37] O-minimal hybrid systems. Math. Control Signals Syst. 13 (2000) 1-21. | Zbl
, and ,[38] Uppaal: Status & developments. In CAV'97: Computer Aided Verification. Lect. Notes Comput. Sci. 1254 (1997) 456-459.
, and ,[39] Hybrid regular expressions. In Proceedings of the First International Workshop on Hybrid Systems: Computation and Control. Lect. Notes Comput. Sci. 1386 (1998) 384-399.
, , , and ,[40] Model theory, Graduate Texts in Mathematics 217. Springer-Verlag, New York (2002). | Zbl
,[41] Decidability and complexity results for timed automata and semi-linear hybrid automata. In HSCC'00: Hybrid Systems: Computation and Control. Lect. Notes Comput. Sci. 1790 (2000) 296-309. | Zbl
,[42] Definable sets in ordered structures. I. Trans. Amer. Math. Soc. 295 (1986) 565-592. | Zbl
and ,[43] The temporal logic of programs. In Proc. 18th Ann. Symp. Foundations of Computer Science (FOCS'77), IEEECSP (1977) 46-57.
,[44] Specification and verification of concurrent systems in CESAR. In Proc. 5th Intl Symp. on Programming (SOP'82). Lect. Notes Comput. Sci. 137 (1982) 337-351. | Zbl
and ,[45] Saturated model theory. W.A. Benjamin, Inc., Reading, Mass. Mathematics Lecture Notes Series (1972). | Zbl
,[46] Folk theorems on the determinization and minimization of timed automata. Inform. Process. Lett. 99 (2006) 222-226. | Zbl
,[47] Mixed real-integer linear quantifier elimination. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC) (electronic). ACM, New York (1999) 129-136.
,[48] Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Amer. Math. Soc. 9 (1996) 1051-1094. | Zbl
,Cité par Sources :