Unambiguous erasing morphisms in free monoids
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 2, pp. 193-208.

This paper discusses the fundamental combinatorial question of whether or not, for a given string α, there exists a morphism σ such that σ is unambiguous with respect to α, i.e. there exists no other morphism τ satisfying τ(α) = σ(α). While Freydenberger et al. [Int. J. Found. Comput. Sci. 17 (2006) 601-628] characterise those strings for which there exists an unambiguous nonerasing morphism σ, little is known about the unambiguity of erasing morphisms, i.e. morphisms that map symbols onto the empty string. The present paper demonstrates that, in contrast to the main result by Freydenberger et al., the existence of an unambiguous erasing morphism for a given string can essentially depend on the size of the target alphabet of the morphism. In addition to this, those strings for which there exists an erasing morphism over an infinite target alphabet are characterised, complexity issues are discussed and some sufficient conditions for the (non-)existence of unambiguous erasing morphisms are given.

DOI : 10.1051/ita/2009020
Classification : 68R15, 68Q25
Mots-clés : combinatorics on words, morphisms in free monoids, unambiguity, complexity
@article{ITA_2010__44_2_193_0,
     author = {Schneider, Johannes C.},
     title = {Unambiguous erasing morphisms in free monoids},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {193--208},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {2},
     year = {2010},
     doi = {10.1051/ita/2009020},
     mrnumber = {2674540},
     zbl = {1203.68132},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2009020/}
}
TY  - JOUR
AU  - Schneider, Johannes C.
TI  - Unambiguous erasing morphisms in free monoids
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2010
SP  - 193
EP  - 208
VL  - 44
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2009020/
DO  - 10.1051/ita/2009020
LA  - en
ID  - ITA_2010__44_2_193_0
ER  - 
%0 Journal Article
%A Schneider, Johannes C.
%T Unambiguous erasing morphisms in free monoids
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2010
%P 193-208
%V 44
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita/2009020/
%R 10.1051/ita/2009020
%G en
%F ITA_2010__44_2_193_0
Schneider, Johannes C. Unambiguous erasing morphisms in free monoids. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 2, pp. 193-208. doi : 10.1051/ita/2009020. http://www.numdam.org/articles/10.1051/ita/2009020/

[1] C. Choffrut and J. Karhumäki, Combinatorics of words, edited by G. Rozenberg and A. Salomaa, Handbook of Formal Languages 1, Chap. 6. Springer (1997) 329-438.

[2] A. Ehrenfeucht and G. Rozenberg, Finding a homomorphism between two words is NP-complete. Inform. Process. Lett. 9 (1979) 86-88. | Zbl

[3] D.D. Freydenberger and D. Reidenbach, The unambiguity of segmented morphisms. In Proc. 11th International Conference on Developments in Language Theory, DLT 2007. Lect. Notes Comput. Sci. (2007) 181-192. | Zbl

[4] D.D. Freydenberger, D. Reidenbach and J.C. Schneider, Unambiguous morphic images of strings. Int. J. Found. Comput. Sci. 17 (2006) 601-628. | Zbl

[5] M.R. Garey and D.S. Johnson, Computers and Intractability - A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979). | Zbl

[6] T. Head, Fixed languages and the adult languages of 0L schemes. Int. J. Comput. Math. 10 (1981) 103-107. | Zbl

[7] T. Jiang, A. Salomaa, K. Salomaa and S. Yu, Decision problems for patterns. J. Comput. System Sci. 50 (1995) 53-63. | Zbl

[8] A. Mateescu and A. Salomaa, Patterns, edited by G. Rozenberg and A. Salomaa, Handbook of Formal Languages 1, Chap. 4.6. Springer (1997) 230-242. | Zbl

[9] D. Reidenbach, A non-learnable class of E-pattern languages. Theoret. Comput. Sci. 350 (2006) 91-102. | Zbl

[10] D. Reidenbach, Discontinuities in pattern inference. Theoret. Comput. Sci. 397 (2008) 166-193. | Zbl

[11] D. Reidenbach and J.C. Schneider, Morphically primitive words, in Proc. 6th International Conference on Words, WORDS 2007 (2007) 262-272. | Zbl

[12] J.C. Schneider, Unambiguous erasing morphisms in free monoids, in Proc. SOFSEM 2009: Theorie and Practice of Computer Science. Lect. Notes Comput. Sci. 5404 (2009) 473-484. | Zbl

Cité par Sources :