An a priori Campanato type regularity condition is established for a class of W1X local minimisers of the general variational integral where is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space , µ < n, Campanato space and the space of bounded mean oscillation . The admissible maps are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.
Mots clés : calculus of variations, local minimiser, partial regularity, strong quasiconvexity, Campanato space, Morrey space, Morrey-Campanato space, space of bounded mean oscillation, extremals, positive second variation
@article{COCV_2010__16_1_111_0, author = {Dodd, Thomas J.}, title = {An a priori {Campanato} type regularity condition for local minimisers in the calculus of variations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {111--131}, publisher = {EDP-Sciences}, volume = {16}, number = {1}, year = {2010}, doi = {10.1051/cocv:2008066}, mrnumber = {2598091}, zbl = {1183.49037}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008066/} }
TY - JOUR AU - Dodd, Thomas J. TI - An a priori Campanato type regularity condition for local minimisers in the calculus of variations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 111 EP - 131 VL - 16 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008066/ DO - 10.1051/cocv:2008066 LA - en ID - COCV_2010__16_1_111_0 ER -
%0 Journal Article %A Dodd, Thomas J. %T An a priori Campanato type regularity condition for local minimisers in the calculus of variations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 111-131 %V 16 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008066/ %R 10.1051/cocv:2008066 %G en %F COCV_2010__16_1_111_0
Dodd, Thomas J. An a priori Campanato type regularity condition for local minimisers in the calculus of variations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 111-131. doi : 10.1051/cocv:2008066. http://www.numdam.org/articles/10.1051/cocv:2008066/
[1] A regularity theorem for quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261-281. | Zbl
and ,[2] Local regularity for minimizers of non convex integrals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989) 603-636. | Numdam | Zbl
and ,[3] Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140 (1989) 115-135. | Zbl
and ,[4] Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 175-188. | Numdam | Zbl
,[5] Partial regularity of local minimisers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc. Edinburgh 133 (2003) 1249-1262. | Zbl
and ,[6] Partial regularity of minimisers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. 175 (1998) 141-164. | Zbl
, and ,[7] Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. 184 (2005) 421-448.
, and ,[8] Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227-252. | Zbl
,[9] Hp spaces of several variables. Acta Math. 129 (1972) 137-193. | Zbl
and ,[10] Positive second variation and local minimisers in BMO-Sobolev spaces. SFB 256: Preprint No. 252, University of Bonn, Germany (1992).
,[11] Direct methods in the calculus of variations. World Scientific Publishing, Singapore (2003). | Zbl
,[12] Sulla regolaritá delle soluzioni di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal. 31 (1968) 173-184. | Zbl
and ,[13] Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. Partial Differential Equations 29 (2007) 59-83. | Zbl
and ,[14] On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415-426. | Zbl
and ,[15] Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003) 63-89. | Zbl
and ,[16] Vanishing mean oscillation and regularity in the calculus of variations. Preprint No. 96, MPI for Mathematics in the Sciences, Leipzig, Germany (2001).
,[17] Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157 (2003) 715-742. | Zbl
and ,Cité par Sources :