Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 77-91.

This paper is concerned with the following periodic hamiltonian elliptic system {-Δφ+V(x)φ=G ψ (x,φ,ψ)in N ,-Δψ+V(x)ψ=G φ (x,φ,ψ)in N ,φ(x)0andψ(x)0as|x|. Assuming the potential V is periodic and 0 lies in a gap of σ(-Δ+V), G(x,η) is periodic in x and asymptotically quadratic in η=(φ,ψ), existence and multiplicity of solutions are obtained via variational approach.

DOI : 10.1051/cocv:2008064
Classification : 35J50, 35J55
Mots clés : hamiltonian elliptic system, variational methods, strongly indefinite functionals
@article{COCV_2010__16_1_77_0,
     author = {Zhao, Fukun and Zhao, Leiga and Ding, Yanheng},
     title = {Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {77--91},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {1},
     year = {2010},
     doi = {10.1051/cocv:2008064},
     mrnumber = {2598089},
     zbl = {1189.35091},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2008064/}
}
TY  - JOUR
AU  - Zhao, Fukun
AU  - Zhao, Leiga
AU  - Ding, Yanheng
TI  - Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 77
EP  - 91
VL  - 16
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2008064/
DO  - 10.1051/cocv:2008064
LA  - en
ID  - COCV_2010__16_1_77_0
ER  - 
%0 Journal Article
%A Zhao, Fukun
%A Zhao, Leiga
%A Ding, Yanheng
%T Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 77-91
%V 16
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2008064/
%R 10.1051/cocv:2008064
%G en
%F COCV_2010__16_1_77_0
Zhao, Fukun; Zhao, Leiga; Ding, Yanheng. Infinitely many solutions for asymptotically linear periodic hamiltonian elliptic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 77-91. doi : 10.1051/cocv:2008064. http://www.numdam.org/articles/10.1051/cocv:2008064/

[1] N. Ackermann, On a periodic Schrödinger equation with nonlinear superlinear part. Math. Z. 248 (2004) 423-443. | MR | Zbl

[2] N. Ackermann, A superposition principle and multibump solutions of periodic Schrödinger equations. J. Func. Anal. 234 (2006) 277-320. | MR | Zbl

[3] C.O. Alves, P.C. Carrião and O.H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in N . J. Math. Anal. Appl. 276 (2002) 673-690. | MR | Zbl

[4] A.I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems. J. Diff. Eq. 191 (2003) 348-376. | MR | Zbl

[5] A.I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems. Nonlinear Differ. Equ. Appl. 12 (2005) 459-479. | MR | Zbl

[6] T. Bartsch and D.G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems, in Progress in Nonlinear Differential Equations and Their Applications 35, Birkhäuser, Basel/Switzerland (1999) 51-67. | MR | Zbl

[7] T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nach. 279 (2006) 1-22. | MR | Zbl

[8] V. Benci and P.H. Rabinowitz, Critical point theorems for indefinite functionals. Inven. Math. 52 (1979) 241-273. | EuDML | MR | Zbl

[9] V. Coti-Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1991) 693-727. | MR | Zbl

[10] V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on N . Comm. Pure Appl. Math. 45 (1992) 1217-1269. | MR | Zbl

[11] D.G. De Figueiredo and Y.H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems. Trans. Amer. Math. Soc. 355 (2003) 2973-2989. | MR | Zbl

[12] D.G. De Figueiredo and P.L. Felmer, On superquadratic elliptic systems. Trans. Amer. Math. Soc. 343 (1994) 97-116. | MR | Zbl

[13] D.G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33 (1998) 211-234. | MR | Zbl

[14] D.G. De Figueiredo, J. Marcos Do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems. J. Func. Anal. 224 (2005) 471-496. | MR | Zbl

[15] Y. Ding and L. Jeanjean, Homoclinic orbits for a non periodic Hamiltonian system. J. Diff. Eq. 237 (2007) 473-490. | MR | Zbl

[16] Y. Ding and F.H. Lin, Semiclassical states of Hamiltonian systems of Schrödinger equations with subcritical and critical nonlinearies. J. Partial Diff. Eqs. 19 (2006) 232-255. | MR | Zbl

[17] J. Hulshof and R.C.A.M. Van De Vorst, Differential systems with strongly variational structure. J. Func. Anal. 114 (1993) 32-58. | MR | Zbl

[18] W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications. Trans. Amer. Math. Soc. 349 (1997) 3181-3234. | MR | Zbl

[19] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations. Adv. Differential Equations 3 (1998) 441-472. | MR | Zbl

[20] G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part. Comm. Contemp. Math. 4 (2002) 763-776. | MR | Zbl

[21] G. Li and J. Yang, Asymptotically linear elliptic systems. Comm. Partial Diff. Eq. 29 (2004) 925-954. | MR | Zbl

[22] A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions. J. Diff. Eq. 201 (2004) 160-176. | MR | Zbl

[23] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV Analysis of Operators. Academic Press, New York (1978). | MR | Zbl

[24] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems. Math. Z. 209 (1992) 133-160. | EuDML | MR | Zbl

[25] B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in RN. Adv. Differential Equations 5 (2000) 1445-1464. | MR | Zbl

[26] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Diff. Eq. 21 (1996) 1431-1449. | MR | Zbl

[27] M. Willem, Minimax Theorems. Birkhäuser, Berlin (1996). | MR | Zbl

[28] J. Yang, Nontrivial solutions of semilinear elliptic systems in N . Electron. J. Diff. Eqns. 6 (2001) 343-357. | EuDML | MR | Zbl

Cité par Sources :