We consider a mesoscopic model for phase transitions in a periodic medium and we construct multibump solutions. The rational perturbative case is dealt with by explicit asymptotics.
Mots-clés : oscillatory solutions of PDEs, phase transitions, asymptotic expansions
@article{COCV_2009__15_4_914_0, author = {Novaga, Matteo and Valdinoci, Enrico}, title = {Multibump solutions and asymptotic expansions for mesoscopic {Allen-Cahn} type equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {914--933}, publisher = {EDP-Sciences}, volume = {15}, number = {4}, year = {2009}, doi = {10.1051/cocv:2008058}, mrnumber = {2567252}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008058/} }
TY - JOUR AU - Novaga, Matteo AU - Valdinoci, Enrico TI - Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 914 EP - 933 VL - 15 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008058/ DO - 10.1051/cocv:2008058 LA - en ID - COCV_2009__15_4_914_0 ER -
%0 Journal Article %A Novaga, Matteo %A Valdinoci, Enrico %T Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 914-933 %V 15 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008058/ %R 10.1051/cocv:2008058 %G en %F COCV_2009__15_4_914_0
Novaga, Matteo; Valdinoci, Enrico. Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 914-933. doi : 10.1051/cocv:2008058. http://www.numdam.org/articles/10.1051/cocv:2008058/
[1] Existence of infinitely many stationary layered solutions in for a class of periodic Allen-Cahn equations. Comm. Partial Diff. Eq. 27 (2002) 1537-1574. | MR | Zbl
, and ,[2] A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1084-1095.
and ,[3] Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 233-252. | Numdam | MR | Zbl
and ,[4] On the spectrum of the Schrödinger operator perturbed by a rapidly oscillating potential. J. Math. Sci. (N. Y.) 139 (2006) 6243-6322. | MR | Zbl
,[5] Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983). | MR | Zbl
,[6] Unicité et minimalité des solutions d'une équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 305-318. | Numdam | MR | Zbl
,[7] Multiplicity results for interfaces of Ginzburg-Landau-Allen-Cahn equations in periodic media. Adv. Math. 215 (2007) 379-426. | MR | Zbl
and ,[8] Sharp-interface limit of a Ginzburg-Landau functional with a random external field. Preprint, http://www.mat.uniroma3.it/users/orlandi/pubb.html (2007). | MR
and ,[9] Pinning and de-pinning phenomena in front propagation in heterogeneous media. Interfaces Free Bound. 8 (2006) 79-109. | MR | Zbl
and ,[10] -convergence of the Allen-Cahn energy with an oscillating forcing term. Interfaces Free Bound. 8 (2006) 47-78. | MR | Zbl
, and ,[11] Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence, RI (1998). | MR | Zbl
,[12] Geometry of quasiminimal phase transitions. Calc. Var. Partial Differential Equations 33 (2008) 1-35. | MR | Zbl
and ,[13] The elements of mechanics, Texts and Monographs in Physics. Springer-Verlag, New York (1983). Translated from the Italian. | MR | Zbl
,[14] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften 224. Springer-Verlag, Berlin, second edition (1983). | MR | Zbl
and ,[15] On the theory of superfluidity. Soviet Physics. JETP 34 (1958) 858-861 (Ž. Eksper. Teoret. Fiz. 1240-1245). | MR
and ,[16] Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, Berlin (1995). | MR | Zbl
,[17] Collected papers of L.D. Landau. Edited and with an introduction by D. ter Haar, Second edition, Gordon and Breach Science Publishers, New York (1967). | MR
,[18] On the eigenvalues for slowly varying perturbations of a periodic Schrödinger operator. Asymptot. Anal. 48 (2006) 295-357. | MR | Zbl
,[19] On the stability of a center for time-periodic perturbations. Trudy Moskov. Mat. Obšč. 12 (1963) 3-52. | MR | Zbl
,[20] On the necessity of gaps. J. Eur. Math. Soc. (JEMS) 8 (2006) 355-373. | MR
and ,[21] The geometry of mesoscopic phase transition interfaces. Discrete Contin. Dyn. Syst. 19 (2007) 777-798. | MR | Zbl
and ,[22] Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris (1892). | JFM
,[23] Mixed states for an Allen-Cahn type equation. Comm. Pure Appl. Math. 56 (2003) 1078-1134. Dedicated to the memory of Jürgen K. Moser. | MR
and ,[24] Mixed states for an Allen-Cahn type equation. II. Calc. Var. Partial Diff. Eq. 21 (2004) 157-207. | MR | Zbl
and ,[25] Translation of J.D. van der Waals' “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”. J. Statist. Phys. 20 (1979) 197-244. | MR
,[26] On the stability of the saddle solution of Allen-Cahn's equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1241-1275. | MR | Zbl
,Cité par Sources :