In this paper we show that a linear variational inequality over an infinite dimensional real Hilbert space admits solutions for every nonempty bounded closed and convex set, if and only if the linear operator involved in the variational inequality is pseudo-monotone in the sense of Brezis.
Mots-clés : Lions-Stampacchia theorem, variational inequality, pseudo-monotone operator
@article{COCV_2009__15_4_810_0, author = {Ernst, Emil and Th\'era, Michel}, title = {A converse to the {Lions-Stampacchia} theorem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {810--817}, publisher = {EDP-Sciences}, volume = {15}, number = {4}, year = {2009}, doi = {10.1051/cocv:2008054}, mrnumber = {2567246}, zbl = {1176.47050}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008054/} }
TY - JOUR AU - Ernst, Emil AU - Théra, Michel TI - A converse to the Lions-Stampacchia theorem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 810 EP - 817 VL - 15 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008054/ DO - 10.1051/cocv:2008054 LA - en ID - COCV_2009__15_4_810_0 ER -
%0 Journal Article %A Ernst, Emil %A Théra, Michel %T A converse to the Lions-Stampacchia theorem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 810-817 %V 15 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008054/ %R 10.1051/cocv:2008054 %G en %F COCV_2009__15_4_810_0
Ernst, Emil; Théra, Michel. A converse to the Lions-Stampacchia theorem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 810-817. doi : 10.1051/cocv:2008054. http://www.numdam.org/articles/10.1051/cocv:2008054/
[1] Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968) 115-175. | Numdam | MR | Zbl
,[2] Les inéquations en mécanique et en physique. Dunod, Paris (1972). | MR | Zbl
and ,[3] Problemi elastostatici con vincoli unilaterali: il problema die Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei 8 (1964) 91-140. | MR | Zbl
,[4] Variational and Hemivariational Inequalities: Theory, Methods, and Applications. Kluwer Academic Publishers (2003). | MR
and ,[5] Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493-519. | MR | Zbl
and ,[6] Variational Analysis and Applications, in Proceedings of the 38th Conference of the School of Mathematics “G. Stampacchia”, in memory of Stampacchia and J.-L. Lions, Erice, June 20-July 1st 2003, F. Giannessi and A. Maugeri Eds., Nonconvex Optimization and its Applications 79, Springer-Verlag, New York (2005). | MR | Zbl
, , and ,[7] Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs 49. American Mathematical Society (1997). | MR | Zbl
,Cité par Sources :