We are concerned with the asymptotic analysis of optimal control problems for -D partial differential equations defined on a periodic planar graph, as the period of the graph tends to zero. We focus on optimal control problems for elliptic equations with distributed and boundary controls. Using approaches of the theory of homogenization we show that the original problem on the periodic graph tends to a standard linear quadratic optimal control problem for a two-dimensional homogenized system, and its solution can be used as suboptimal controls for the original problem.
Mots-clés : optimal control, homogenization, elliptic equation, periodic graph
@article{COCV_2009__15_2_471_0, author = {Kogut, Peter I. and Leugering, G\"unter}, title = {Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {471--498}, publisher = {EDP-Sciences}, volume = {15}, number = {2}, year = {2009}, doi = {10.1051/cocv:2008037}, mrnumber = {2513095}, zbl = {1173.35015}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008037/} }
TY - JOUR AU - Kogut, Peter I. AU - Leugering, Günter TI - Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 471 EP - 498 VL - 15 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008037/ DO - 10.1051/cocv:2008037 LA - en ID - COCV_2009__15_2_471_0 ER -
%0 Journal Article %A Kogut, Peter I. %A Leugering, Günter %T Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 471-498 %V 15 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008037/ %R 10.1051/cocv:2008037 %G en %F COCV_2009__15_2_471_0
Kogut, Peter I.; Leugering, Günter. Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 471-498. doi : 10.1051/cocv:2008037. http://www.numdam.org/articles/10.1051/cocv:2008037/
[1] Variational Convergence for Functional and Operators, Applicable Mathematics Series. Pitman, Boston-London (1984). | MR | Zbl
,[2] Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). | MR | Zbl
, and ,[3] Homogenization of thin structures by two-scale method with respect to measures. SIAM J. Math. Anal. 32 (2001) 1198-1226. | MR | Zbl
and ,[4] -convergence for Beginners. Oxford University Press, Oxford (2002). | MR
,[5] -convergence and its applications to some problems in the calculus of variations, in School on Homogenization, ICTP, Trieste, September 6-17, 1993, SISSA (1994) 38-61.
,[6] -convergence and optimal control problems. J. Optim. Theory Appl. 32 (1982) 385-407. | MR | Zbl
and ,[7] An adaption of the multi-scale methods for the analysis of very thin reticulated structures. C. R. Acad. Sci. Paris Sér. I 332 (2001) 223-228. | MR | Zbl
, and ,[8] On homogenization of networks and junctions. J. Asymp. Anal. 30 (2000) 61-80. | MR | Zbl
, , and ,[9] A strange term coming from nowhere, in Topic in the Math. Modelling of Composit Materials, Boston, Birkhäuser, Prog. Non-linear Diff. Equ. Appl. 31 (1997) 49-93. | MR | Zbl
and ,[10] Exact boundary controllability for the wave equation in domains with small holes. J. Math. Pures Appl. 69 (1990) 1-31. | MR | Zbl
, and ,[11] A semilinear control problem involving in homogenization. Electr. J. Diff. Equ. (2001) 109-122. | MR | Zbl
, and ,[12] An Introduction of -Convergence. Birkhäuser, Boston (1993). | MR | Zbl
,[13] Perturbations singulières et problèmes de contrôle optimal : deux cas bien posés. C. R. Acad. Sci. Paris Sér. I 297 (1983) 21-24. | MR | Zbl
and ,[14] Perturbations singulières et problèmes de contrôle optimal : un cas mal posé. C. R. Acad. Sci. Paris Sér. I 297 (1983) 93-96. | MR | Zbl
and ,[15] L'homogénéisation d'un problème de contrôle optimal. C. R. Acad. Sci. Paris Sér. A-B 285 (1977) 441-444. | MR | Zbl
and ,[16] Optimal control on perforated domains. J. Math. Anal. Appl. 229 (1999) 563-586. | MR | Zbl
and ,[17] -convergence in homogenization theory of optimal control problems. Ukrain. Matemat. Zhurnal 49 (1997) 1488-1498 (in Russian). | MR | Zbl
,[18] Homogenization of optimal control problems in variable domains. Principle of the fictitious homogenization. Asymptotic Anal. 26 (2001) 37-72. | MR | Zbl
and ,[19] Asymptotic analysis of state constrained semilinear optimal control problems. J. Optim. Theory Appl. 135 (2007) 301-321. | MR | Zbl
and ,[20] Homogenization of Dirichlet optimal control problems with exact partial controllability constraints. Asymptotic Anal. 57 (2008) 229-249. | MR | Zbl
and ,[21] Asymptotic analysis of optimal control problems in thick multi-structures, in Generalized Solutions in Control Problems, Proceedings of the IFAC Workshop GSCP-2004, Pereslavl-Zalessky, Russia, September 21-29 (2004) 265-275.
and ,[22] Domain decomposition methods in optimal control of partial differential equations, International Series of Numerical Mathematics 148. Birkhäuser Verlag, Basel (2004). | MR | Zbl
and ,[23] Homogenization of electrical networks including voltage to voltage amplifiers. Math. Meth. Appl. Sci. 9 (1999) 899-932. | MR | Zbl
and ,[24] On the modelling and stabilization of flows in networks of open canals. SIAM J. Contr. Opt. 41 (2002) 164-180. | MR | Zbl
and ,[25] Optimal Control of Systems Governed by Partial Differential Equations. Berlin, Springer-Verlag (1971). | MR | Zbl
,[26] Averaging of a differential operator on thick periodic grid. Math. Nachr. 133 (1987) 107-133. | Zbl
and ,[27] Finite difference approximation of homogenization for elliptic equation. Multiscale Model. Simul. 4 (2005) 36-87. | MR | Zbl
and ,[28] Asymptotic solutions of the elasticity theory system of equations for lattice and skeletal structures. Russian Academy Sci. Sbornik Math. 75 (1993) 85-110. | MR | Zbl
,[29] Homogenization of lattice-like domains. L-convergence. Reprint No. 178, Analyse numérique, Lyon Saint-Étienne (1994). | Zbl
,[30] Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter, Berlin, New York (1997). | MR | Zbl
,[31] Homogenization of Reticulated Structures, Applied Mathematical Sciences 136. Springer-Verlag, Berlin-New York (1999). | MR | Zbl
and ,[32] Optimal control and “strange term” for the Stokes problem in perforated domains. Portugaliac Mathematica 59 (2002) 161-178. | MR | Zbl
and ,[33] A homogenization result for planar, polygonal networks. RAIRO Modél. Math. Anal. Numér. 25 (1991) 483-514. | Numdam | MR | Zbl
,[34] Weighted Sobolev spaces. Sbornik: Mathematics 189 (1998) 27-58. | MR | Zbl
,[35] On an extension of the method of two-scale convergence and its applications. Sbornik: Mathematics 191 (2000) 973-1014. | MR | Zbl
,[36] Homogenization of elastic problems on singular structures. Izvestija: Math. 66 (2002) 299-365. | Zbl
,[37] Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994). | MR | Zbl
, and ,Cité par Sources :