In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes and, in particular, exponential stability of heat exchangers. Through concrete examples we show how Lyapunov’s second method may be extended to stability analysis of nonlinear hyperbolic PDE. Meanwhile we explain how the method is adapted to the framework of Banach spaces , .
Mots-clés : hyperbolic symmetric systems, partial differential equations, exponential stability, strongly continuous semigroups, Lyapunov functionals, heat exchangers
@article{COCV_2009__15_2_403_0, author = {Tchousso, Abdoua and Besson, Thibaut and Xu, Cheng-Zhong}, title = {Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using {Lyapunov's} second method}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {403--425}, publisher = {EDP-Sciences}, volume = {15}, number = {2}, year = {2009}, doi = {10.1051/cocv:2008033}, mrnumber = {2513092}, zbl = {1167.37036}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008033/} }
TY - JOUR AU - Tchousso, Abdoua AU - Besson, Thibaut AU - Xu, Cheng-Zhong TI - Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 403 EP - 425 VL - 15 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008033/ DO - 10.1051/cocv:2008033 LA - en ID - COCV_2009__15_2_403_0 ER -
%0 Journal Article %A Tchousso, Abdoua %A Besson, Thibaut %A Xu, Cheng-Zhong %T Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 403-425 %V 15 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008033/ %R 10.1051/cocv:2008033 %G en %F COCV_2009__15_2_403_0
Tchousso, Abdoua; Besson, Thibaut; Xu, Cheng-Zhong. Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 403-425. doi : 10.1051/cocv:2008033. http://www.numdam.org/articles/10.1051/cocv:2008033/
[1] Stabilisation frontière indirecte de systèmes faiblement couplés. C.R. Acad. Sci. Paris Série I 328 (1999) 1015-1020. | MR | Zbl
,[2] Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Eq. 2 (2002) 127-150. | MR | Zbl
, and ,[3] Rotational elastic dynamics. Physica D 27 (1987) 43-62. | MR | Zbl
and ,[4] Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559-1622. | MR | Zbl
, and ,[5] Analyse fonctionnelle : théorie et applications. Masson, Paris (1983). | MR | Zbl
,[6] Mesure de défaut de compacité, application au système de Lamé. Ann. Sci. École Norm. Sup. 34 (2001) 817-870. | Numdam | MR | Zbl
and ,[7] Boundary control of a class of hyperbolic systems. Eur. J. Control 9 (2003) 589-604.
and ,[8] A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations. European Control Conference ECC'99, Karlsruhe, September (1999).
, and ,[9] A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Control 52 (2007) 2-11. | MR
, and ,[10] An introduction to infinite-dimensional linear systems theory. Springer-Verlag, New York (1995). | MR | Zbl
and ,[11] Commande non linéaire des robots. Hermès (1988).
,[12] Stability results for the wave equation with indefinite damping. J. Diff. Eq. 132 (1996) 338-353. | MR | Zbl
,[13] The effect of boundary damping for the quasilinear wave equation. J. Diff. Eq. 52 (1984) 66-75. | MR | Zbl
and ,[14] Modeling of particule size distribution in emulsion co-polymerization: comparaison with experimental data and parameter sensitivity studies. Comput. Chem. Eng. 26 (2002) 1133-1152.
, , , , and ,[15] Sur la stabilité des ensembles compacts positivement invariants des systèmes dynamiques. RAIRO-Automatique 16 (1982) 275-286. | MR | Zbl
,[16] Functional analysis in normed spaces. Pergamon Press, Oxford (1964). | MR | Zbl
and ,[17] Exact controllability and stabilization: the multiplier method, Research in Applied Mathematics. Series Editors: P.G. Ciarlet and J.L. Lions, Masson, Paris (1994). | MR | Zbl
,[18] A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33-54. | MR | Zbl
and ,[19] Stability by Liapunov's direct method with applications. Academic Press, New York (1961). | MR | Zbl
and ,[20] Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 (1960) 427-455. | MR | Zbl
and ,[21] Global classical solutions for quasilinear hyperbolic systems, Research in Applied Mathematics. John Wiley & Sons, New York (1994). | MR | Zbl
,[22] Problème général de la stabilité du mouvement. Princeton University Press, Princeton, New Jersey (1947). | MR | Zbl
,[23] Génie chimique à l'usage des chimistes. Lavoisier, Paris (1998).
,[24] Stability and stabilization of infinite dimensional systems with applications. Springer, London (1999). | MR | Zbl
, and ,[25] Nasa Technical Memorandum, Progress Report No. 8, in Proceedings of the twenty-fourth seminar on space flight and guidance theory, NASA George G. Marshall space flight center, Huntsville, Alabama, June 3 (1966).
[26] Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett. 18 (1992) 93-98. | MR | Zbl
and ,[27] Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | MR | Zbl
,[28] Simulation and analysis of industrial cristallization processes through multidimensional population balance equation. Part 1: A resolution algorithm based on the method of classes. Chem. Engrg. Sci. 58 (2003) 3715-3727.
, and ,[29] Population balancemodeling. Promise for the future. Chem. Engrg. Sci. 57 (2002) 595-606.
and ,[30] Le taux optimal de décroissance de l'énergie dans l'équation de poutre de Rayleigh. C. R. Acad. Sci. Paris 325 (1997) 737-742. | MR | Zbl
,[31] Exponential decay of solutions to hyperbolic equations in bounded domain. Indiana Univ. Math. J. 24 (1974) 79-86. | MR | Zbl
and ,[32] Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639-739. | MR | Zbl
,[33] Solvability of hyperbolic IBVPS through filtering. Methods Appl. Anal. 12 (2005) 253-266. | MR | Zbl
,[34] Further comments on the stabilizability of the angular velocity of a rigid body. Systems Control Lett. 12 (1988) 213-217. | MR | Zbl
and ,[35] On the application of Zubov's method of constructing Liapunov functions for nonlinear control systems. Transaction of ASME Journal of Basic Eng. Series D 85 (1963) 137-142.
,[36] Étude de la stabilité asymptotique de quelques modèles de transfert de chaleur. Ph.D. thesis, University of Claude Bernard - Lyon 1, France (2004).
,[37] Exponential stability of symmetric hyperbolic systems using Lyapunov functionals, in Proceedings of the 10th IEEE International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland (2004) 361-364.
and ,[38] Stabilization of Hamiltonian systems. Nonlinear Anal. Methods Appl. 10 (1986) 1021-1035. | MR | Zbl
,[39] Exponential stability and transfer functions of a heat exchanger network. Rapport de Recherche de l'INRIA 3823 (1999) 1-21.
and ,[40] Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM: COCV 7 (2002) 421-442. | Numdam | MR | Zbl
and ,[41] Exponential stability of the heat exchanger equation, in Proceedings of the European Control Conference, Groningen, The Netherlands (1993) 303-307.
, and ,[42] Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 109-129. | Numdam | MR | Zbl
,Cité par Sources :