We consider an optimal control problem for a system of the form = , with a running cost . We prove an interior sphere property for the level sets of the corresponding value function . From such a property we obtain a semiconcavity result for , as well as perimeter estimates for the attainable sets of a symmetric control system.
Mots-clés : control theory, interior sphere property, value function, semiconcavity, perimeter
@article{COCV_2009__15_1_102_0, author = {Castelpietra, Marco}, title = {Interior sphere property for level sets of the value function of an exit time problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {102--116}, publisher = {EDP-Sciences}, volume = {15}, number = {1}, year = {2009}, doi = {10.1051/cocv:2008018}, mrnumber = {2488570}, zbl = {1155.49024}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008018/} }
TY - JOUR AU - Castelpietra, Marco TI - Interior sphere property for level sets of the value function of an exit time problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 102 EP - 116 VL - 15 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008018/ DO - 10.1051/cocv:2008018 LA - en ID - COCV_2009__15_1_102_0 ER -
%0 Journal Article %A Castelpietra, Marco %T Interior sphere property for level sets of the value function of an exit time problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 102-116 %V 15 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008018/ %R 10.1051/cocv:2008018 %G en %F COCV_2009__15_1_102_0
Castelpietra, Marco. Interior sphere property for level sets of the value function of an exit time problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 1, pp. 102-116. doi : 10.1051/cocv:2008018. http://www.numdam.org/articles/10.1051/cocv:2008018/
[1] Existence and uniqueness for dislocation dynamics with nonnegative velocity. Interfaces Free Bound. 7 (2005) 415-434. | MR | Zbl
, and ,[2] Perimeter estimates for the reachable set of control problems. J. Convex Anal. 13 (2006) 253-267. | MR | Zbl
and ,[3] Interior sphere property of attainable sets and time optimal control problems. ESAIM: COCV 12 (2006) 350-370. | Numdam | MR | Zbl
and ,[4] Convexity properties of the minimun time function. Calc. Var. Partial Differential Equations 3 (1995) 273-298. | MR | Zbl
and ,[5] Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Birkhauser, Boston (2004). | MR | Zbl
and ,[6] Semiconcavity for optimal control problems with exit time. Discrete Contin. Dynam. Systems 6 (2000) 975-997. | MR | Zbl
, and ,[7] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. Boca Raton (1992). | MR | Zbl
and ,[8] Semiconcavity of the value function for exit time problems with nonsmooth target. Commun. Pure Appl. Anal. 3 (2004) 757-774. | MR | Zbl
,Cité par Sources :