We study variational problems with volume constraints, i.e., with level sets of prescribed measure. We introduce a numerical method to approximate local minimizers and illustrate it with some two-dimensional examples. We demonstrate numerically nonexistence results which had been obtained analytically in previous work. Moreover, we show the existence of discontinuous dependence of global minimizers from the data by using a -limit argument and illustrate this with numerical computations. Finally we construct explicitly local and global minimizers for problems with two volume constraints.
Mots-clés : volume constrained problems, numerical simulations, level set method, local minima
@article{COCV_2008__14_4_780_0, author = {Oudet, \'Edouard and Rieger, Marc Oliver}, title = {Local minimizers of functionals with multiple volume constraints}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {780--794}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008013}, mrnumber = {2451796}, zbl = {1148.49030}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008013/} }
TY - JOUR AU - Oudet, Édouard AU - Rieger, Marc Oliver TI - Local minimizers of functionals with multiple volume constraints JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 780 EP - 794 VL - 14 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008013/ DO - 10.1051/cocv:2008013 LA - en ID - COCV_2008__14_4_780_0 ER -
%0 Journal Article %A Oudet, Édouard %A Rieger, Marc Oliver %T Local minimizers of functionals with multiple volume constraints %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 780-794 %V 14 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008013/ %R 10.1051/cocv:2008013 %G en %F COCV_2008__14_4_780_0
Oudet, Édouard; Rieger, Marc Oliver. Local minimizers of functionals with multiple volume constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 780-794. doi : 10.1051/cocv:2008013. http://www.numdam.org/articles/10.1051/cocv:2008013/
[1] Existence and regularity for mixtures of micromagnetic materials. Proc. Royal Soc. London Sect. A 462 (2006) 2225-2244. | MR | Zbl
, and ,[2] An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986) 191-198. | MR | Zbl
, and ,[3] A level-set method for shape optimization. C. R. Acad. Sci. Paris 334 (2002) 1125-1130. | MR | Zbl
, and ,[4] On a volume-constrained variational problem. Arch. Ration. Mech. Anal. 149 (1999) 23-47. | MR | Zbl
, , and ,[5] -convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford (2002). | MR | Zbl
,[6] Variational Methods in Shape Optimization Problems 65. Birkhäuser Boston (2005). | MR | Zbl
and ,[7] An Introduction to -Convergence. Birkhäuser Boston Inc., Boston, MA (1993). | MR | Zbl
,[8] Two-phase binary fluids and immissible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 815-831. | MR | Zbl
, and ,[9] Variation et optimisation de formes, une analyse géométrique 48. Springer-Verlag, Paris (2005). | MR | Zbl
and ,[10] On a volume constrained variational problem with lower order terms. Appl. Math. Optim. 48 (2003) 21-38. | MR | Zbl
and ,[11] Variational problems with several volume constraints on the level sets. Calc. Var. Part. Diff. Equ. 14 (2002) 233-247. | MR | Zbl
and ,[12] Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys 171 (2001) 272-288. | MR | Zbl
and ,[13] Front propagation with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12-49. | MR | Zbl
and ,[14] Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315-335. | EuDML | Numdam | MR | Zbl
,[15] Abstract variational problems with volume constraints. ESAIM: COCV 10 (2004) 84-98. | EuDML | Numdam | MR | Zbl
,[16] Higher dimensional variational problems with volume constraints - existence results and -convergence. Interfaces and Free Boundaries (to appear). | MR | Zbl
,[17] Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Series in Computational Mathematics 10. Springer (1992). | MR | Zbl
and ,[18]
, (29-19 BC).Cité par Sources :