One may produce the th harmonic of a string of length by applying the ’correct touch’ at the node during a simultaneous pluck or bow. This notion was made precise by a model of Bamberger, Rauch and Taylor. Their ’touch’ is a damper of magnitude concentrated at . The ’correct touch’ is that for which the modes, that do not vanish at , are maximally damped. We here examine the associated spectral problem. We find the spectrum to be periodic and determined by a polynomial of degree . We establish lower and upper bounds on the spectral abscissa and show that the set of associated root vectors constitutes a Riesz basis and so identify ’correct touch’ with the that minimizes the spectral abscissa.
Mots-clés : point-wise damping, spectral abscissa, Riesz basis
@article{COCV_2008__14_4_657_0, author = {Cox, Steven J. and Henrot, Antoine}, title = {Eliciting harmonics on strings}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {657--677}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008004}, mrnumber = {2451789}, zbl = {1154.35411}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008004/} }
TY - JOUR AU - Cox, Steven J. AU - Henrot, Antoine TI - Eliciting harmonics on strings JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 657 EP - 677 VL - 14 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008004/ DO - 10.1051/cocv:2008004 LA - en ID - COCV_2008__14_4_657_0 ER -
%0 Journal Article %A Cox, Steven J. %A Henrot, Antoine %T Eliciting harmonics on strings %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 657-677 %V 14 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2008004/ %R 10.1051/cocv:2008004 %G en %F COCV_2008__14_4_657_0
Cox, Steven J.; Henrot, Antoine. Eliciting harmonics on strings. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 657-677. doi : 10.1051/cocv:2008004. http://www.numdam.org/articles/10.1051/cocv:2008004/
[1] Asymptotic behavior of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asymptot. Anal. 28 (2001) 215-240. | MR | Zbl
, and ,[2] A model for harmonics on stringed instruments. Arch. Rational Mech. Anal. 79 (1982) 267-290. | MR | Zbl
, and ,[3] Masters of the Violin, Sonatas for the Violin, Jean-Joseph Cassanéa de Mondonville 5. Johnson Reprint (1982).
,[4] Réflexions et éclaircissemens sur les nouvelles vibrations des cordes exposées dans les mémoires de 1747 and 1748. Histoire de l'Academie royale des sciences et belles lettres 9 (1753) 148-172.
,[5] Experimental determination of the viscoelastic properties of the human fingerpad. Touch Lab Report 14, RLE TR-632, MIT, Cambridge (1999).
and ,[6] The Evolution of Dynamics, Vibration Theory from 1687 to 1742. Springer, New York (1981). | MR | Zbl
and ,[7] Rameau and Musical Thought in the Enlightenment. Cambridge (1993).
,[8] Aye there's the rub, An inquiry into how a damped string comes to rest, in Six Themes on Variation, R. Hardt Ed., AMS (2004) 37-58. | MR
,[9] The rate at which energy decays in a damped string. Comm. Partial Diff. Eq. 19 (1994) 213-243. | MR | Zbl
and ,[10] The rate at which energy decays in a string damped at one end. Indiana U. Math. J. 44 (1995) 545-573. | MR | Zbl
and ,[11] A physical model of the classical guitar, including the player's touch. Comput. Music J. 23 (1999) 52-69.
and ,[12]
, and his trumpet marine. Music Lett. 14 (1933) 18-29.[13] Cassell, London (1957).
, .[14] A sufficient condition on Riesz basis with parenthesis of nonself-adjoint operator and application to a serially connected string system under joint feedbacks. SIAM J. Control Optim. 43 (2004) 1234-1252. | MR | Zbl
and ,[15] On the Sensations of Tone. Dover (1954).
,[16] Singular internal stabilization of the wave equation. J. Diff. Eq. 145 (1998) 184-215. | MR | Zbl
, and ,[17] Resonance modes in a 1-D medium with two purely resistive boundaries: calculation methdos, orthogogonality and completeness. J. Acoust. Soc. Am. 119 (2006) 1356-1367.
, and ,[18] Zur Frage der Seilschwingungen und der Seildämpfung. Die Bautechnik 59 (1982) 325-332.
,[19] On some mathematical principles in the linear theory of damped oscillations of continua I. Integr. Equ. Oper. Theory 1 (1978) 364-399. | MR | Zbl
and ,[20] On direct and inverse problems for the boundary dissipation frequencies of a nonuniform string. Soviet Math. Dokl. 20 (1979) 838-841. | Zbl
and ,[21] Vibrations of a taut cable with an external damper. J. Appl. Mech. 67 (2000) 772-776. | Zbl
,[22] Energy decay problems in the design of a pointwise stabilizer for string vibrating systems. SIAM J. Control Optim. 26 (1988) 1248-1256. | MR | Zbl
,[23] Geometry of Polynomials. AMS (1966). | MR | Zbl
,[24] Anecdotal History of the Science of Sound. Macmillan, New York (1935).
,[25] Facsimile of 1737 Paris Ed., Broude Brothers, New York (1966).
, ,[26] Theory of Sound, Vol. 1. Dover (1945). | MR | Zbl
,[27] A discourse concerning the musical notes of the trumpet, and trumpet-marine, and of the defects of the same. Philosophical Transactions 16 (1692) 559-563.
,[28] Systéme général des intervalles des sons et son application à tous les systémes et à tous les instrumens de musique, Mémoires de l'Académie royale des sciences 1701. Amsterdam (1707) 390-482.
,[29] Tensi. Philosophical Transactions 28 (1713) 26-32.
,[30] The Rational Mechanics of Flexible or Elastic Bodies, 1638-1788, introduction to Leonhardi Euleri Opera Omnia Vols. 10 and 11, Series 2, Leipzig (1912). | Zbl
,[31] Sound. D. Appleton (1875).
,[32] Concerning a new musical discovery. Philosophical Transactions 12 (1677) 839-842.
,[33] Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation. SIAM J. Control Optim. 42 (2003) 966-984. | MR | Zbl
and ,[34] An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego (2001). | MR | Zbl
,[35] A Course of Lectures on Natural Philosophy and the Mechanical Arts. Johnson Reprint (1971).
,[36] On violin harmonics. Perspectives of New Music 6 (1968) 174-181.
,Cité par Sources :