Eliciting harmonics on strings
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 657-677.

One may produce the qth harmonic of a string of length π by applying the ’correct touch’ at the node π/q during a simultaneous pluck or bow. This notion was made precise by a model of Bamberger, Rauch and Taylor. Their ’touch’ is a damper of magnitude b concentrated at π/q. The ’correct touch’ is that b for which the modes, that do not vanish at π/q, are maximally damped. We here examine the associated spectral problem. We find the spectrum to be periodic and determined by a polynomial of degree q-1. We establish lower and upper bounds on the spectral abscissa and show that the set of associated root vectors constitutes a Riesz basis and so identify ’correct touch’ with the b that minimizes the spectral abscissa.

DOI : 10.1051/cocv:2008004
Classification : 35P10, 35P15, 74K05, 74P10
Mots-clés : point-wise damping, spectral abscissa, Riesz basis
@article{COCV_2008__14_4_657_0,
     author = {Cox, Steven J. and Henrot, Antoine},
     title = {Eliciting harmonics on strings},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {657--677},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {4},
     year = {2008},
     doi = {10.1051/cocv:2008004},
     mrnumber = {2451789},
     zbl = {1154.35411},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2008004/}
}
TY  - JOUR
AU  - Cox, Steven J.
AU  - Henrot, Antoine
TI  - Eliciting harmonics on strings
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 657
EP  - 677
VL  - 14
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2008004/
DO  - 10.1051/cocv:2008004
LA  - en
ID  - COCV_2008__14_4_657_0
ER  - 
%0 Journal Article
%A Cox, Steven J.
%A Henrot, Antoine
%T Eliciting harmonics on strings
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 657-677
%V 14
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2008004/
%R 10.1051/cocv:2008004
%G en
%F COCV_2008__14_4_657_0
Cox, Steven J.; Henrot, Antoine. Eliciting harmonics on strings. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 657-677. doi : 10.1051/cocv:2008004. http://www.numdam.org/articles/10.1051/cocv:2008004/

[1] K. Ammari, A. Henrot and M. Tucsnak, Asymptotic behavior of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asymptot. Anal. 28 (2001) 215-240. | MR | Zbl

[2] A. Bamberger, J. Rauch and M. Taylor, A model for harmonics on stringed instruments. Arch. Rational Mech. Anal. 79 (1982) 267-290. | MR | Zbl

[3] G. Banat, Masters of the Violin, Sonatas for the Violin, Jean-Joseph Cassanéa de Mondonville 5. Johnson Reprint (1982).

[4] D. Bernoulli, Réflexions et éclaircissemens sur les nouvelles vibrations des cordes exposées dans les mémoires de 1747 and 1748. Histoire de l'Academie royale des sciences et belles lettres 9 (1753) 148-172.

[5] A.S. Birch and M.A. Srinivasan, Experimental determination of the viscoelastic properties of the human fingerpad. Touch Lab Report 14, RLE TR-632, MIT, Cambridge (1999).

[6] J.T. Cannon and S. Dostrovsky, The Evolution of Dynamics, Vibration Theory from 1687 to 1742. Springer, New York (1981). | MR | Zbl

[7] T. Christensen, Rameau and Musical Thought in the Enlightenment. Cambridge (1993).

[8] S.J. Cox, Aye there's the rub, An inquiry into how a damped string comes to rest, in Six Themes on Variation, R. Hardt Ed., AMS (2004) 37-58. | MR

[9] S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Comm. Partial Diff. Eq. 19 (1994) 213-243. | MR | Zbl

[10] S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end. Indiana U. Math. J. 44 (1995) 545-573. | MR | Zbl

[11] G. Cuzzucoli and V. Lombardo, A physical model of the classical guitar, including the player's touch. Comput. Music J. 23 (1999) 52-69.

[12] F.W. Galpin, Monsieur Prin and his trumpet marine. Music Lett. 14 (1933) 18-29.

[13] C. Girdlestone, Jean-Philippe Rameau. Cassell, London (1957).

[14] B.-Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parenthesis of nonself-adjoint operator and application to a serially connected string system under joint feedbacks. SIAM J. Control Optim. 43 (2004) 1234-1252. | MR | Zbl

[15] H. Helmholtz, On the Sensations of Tone. Dover (1954).

[16] S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Diff. Eq. 145 (1998) 184-215. | MR | Zbl

[17] J. Kergomard, V. Debut and D. Matignon, Resonance modes in a 1-D medium with two purely resistive boundaries: calculation methdos, orthogogonality and completeness. J. Acoust. Soc. Am. 119 (2006) 1356-1367.

[18] I. Kovács, Zur Frage der Seilschwingungen und der Seildämpfung. Die Bautechnik 59 (1982) 325-332.

[19] M.G. Krein and H. Langer, On some mathematical principles in the linear theory of damped oscillations of continua I. Integr. Equ. Oper. Theory 1 (1978) 364-399. | MR | Zbl

[20] M.G. Krein and A.A. Nudelman, On direct and inverse problems for the boundary dissipation frequencies of a nonuniform string. Soviet Math. Dokl. 20 (1979) 838-841. | Zbl

[21] S. Krenk, Vibrations of a taut cable with an external damper. J. Appl. Mech. 67 (2000) 772-776. | Zbl

[22] K.S. Liu, Energy decay problems in the design of a pointwise stabilizer for string vibrating systems. SIAM J. Control Optim. 26 (1988) 1248-1256. | MR | Zbl

[23] M. Marden, Geometry of Polynomials. AMS (1966). | MR | Zbl

[24] D.C. Miller, Anecdotal History of the Science of Sound. Macmillan, New York (1935).

[25] J.-P. Rameau, Generation Harmonique, Facsimile of 1737 Paris Ed., Broude Brothers, New York (1966).

[26] J.W.S. Rayleigh, Theory of Sound, Vol. 1. Dover (1945). | MR | Zbl

[27] F. Roberts, A discourse concerning the musical notes of the trumpet, and trumpet-marine, and of the defects of the same. Philosophical Transactions 16 (1692) 559-563.

[28] J. Sauveur, Systéme général des intervalles des sons et son application à tous les systémes et à tous les instrumens de musique, Mémoires de l'Académie royale des sciences 1701. Amsterdam (1707) 390-482.

[29] B. Taylor, De Moti Nervi Tensi. Philosophical Transactions 28 (1713) 26-32.

[30] C. Truesdell, The Rational Mechanics of Flexible or Elastic Bodies, 1638-1788, introduction to Leonhardi Euleri Opera Omnia Vols. 10 and 11, Series 2, Leipzig (1912). | Zbl

[31] J. Tyndall, Sound. D. Appleton (1875).

[32] J. Wallis, Concerning a new musical discovery. Philosophical Transactions 12 (1677) 839-842.

[33] G.-Q. Xu and B.-Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation. SIAM J. Control Optim. 42 (2003) 966-984. | MR | Zbl

[34] R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego (2001). | MR | Zbl

[35] T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts. Johnson Reprint (1971).

[36] P. Zukovsky, On violin harmonics. Perspectives of New Music 6 (1968) 174-181.

Cité par Sources :