Variational approach to shape derivatives
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 517-539.

A general framework for calculating shape derivatives for optimization problems with partial differential equations as constraints is presented. The proposed technique allows to obtain the shape derivative of the cost without the necessity to involve the shape derivative of the state variable. In fact, the state variable is only required to be Lipschitz continuous with respect to the geometry perturbations. Applications to inverse interface problems, and shape optimization for elliptic systems and the Navier-Stokes equations are given.

DOI : 10.1051/cocv:2008002
Classification : 49Q10, 90C31
Mots-clés : shape derivative
@article{COCV_2008__14_3_517_0,
     author = {Peichl, Gunther H. and Kunisch, Karl and Ito, Kazufumi},
     title = {Variational approach to shape derivatives},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {517--539},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {3},
     year = {2008},
     doi = {10.1051/cocv:2008002},
     mrnumber = {2434064},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2008002/}
}
TY  - JOUR
AU  - Peichl, Gunther H.
AU  - Kunisch, Karl
AU  - Ito, Kazufumi
TI  - Variational approach to shape derivatives
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 517
EP  - 539
VL  - 14
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2008002/
DO  - 10.1051/cocv:2008002
LA  - en
ID  - COCV_2008__14_3_517_0
ER  - 
%0 Journal Article
%A Peichl, Gunther H.
%A Kunisch, Karl
%A Ito, Kazufumi
%T Variational approach to shape derivatives
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 517-539
%V 14
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2008002/
%R 10.1051/cocv:2008002
%G en
%F COCV_2008__14_3_517_0
Peichl, Gunther H.; Kunisch, Karl; Ito, Kazufumi. Variational approach to shape derivatives. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 517-539. doi : 10.1051/cocv:2008002. http://www.numdam.org/articles/10.1051/cocv:2008002/

[1] M. Berggren, A unified discrete-continuous sensitivity analysis method for shape optimization. Lecture at the Radon Institut, Linz, Austria (2005).

[2] Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175-202. | MR | Zbl

[3] P.G. Ciarlet, Mathematical Elasticity, Vol1987). | MR | Zbl

[4] J.C. De los Reyes, Constrained optimal control of stationary viscous incompressible fluids by primal-dual active set methods. Ph.D. thesis, University of Graz, Austria (2003).

[5] J.C. De los Reyes and K. Kunisch, A semi-smooth Newton method for control constrained boundary optimal control of the Navier-Stokes equations. Nonlinear Anal. 62 (2005) 1289-1316. | MR | Zbl

[6] M.C. Delfour and J.P. Zolesio, Shapes and Geometries. SIAM (2001). | MR | Zbl

[7] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). | MR | Zbl

[8] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR | Zbl

[9] J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape, Material and Topological Design. Wiley, Chichester (1996). | MR | Zbl

[10] J. Haslinger and P. Neittaanmaki, Introduction to shape optimization. SIAM, Philadelphia (2003). | MR | Zbl

[11] K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl. 314 (2006) 126-149. | MR | Zbl

[12] F. Murat and J. Simon, Sur le contrôle par un domaine géometrique. Rapport 76015, Université Pierre et Marie Curie, Paris (1976).

[13] J. Sokolowski and J.P. Zolesio, Introduction to shape optimization. Springer, Berlin (1991). | MR | Zbl

[14] R. Temam, Navier Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1979). | MR | Zbl

[15] J.T. Wloka, B. Rowley and B. Lawruk, Boundary value problems for elliptic systems. Cambridge Press (1995). | MR | Zbl

[16] J.P. Zolesio, The material derivative (or speed method) for shape optimization, in Optimization of Distributed Parameter Structures, Vol. II, E. Haug and J. Cea Eds., Sijthoff & Noordhoff (1981). | MR | Zbl

Cité par Sources :