Here, we prove the uniform observability of a two-grid method for the semi-discretization of the -wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413-418]. Our proof follows an Ingham type approach.
Mots-clés : uniform observability, two-grid method, Ingham type theorem
@article{COCV_2008__14_3_604_0, author = {Mehrenberger, Michel and Loreti, Paola}, title = {An {Ingham} type proof for a two-grid observability theorem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {604--631}, publisher = {EDP-Sciences}, volume = {14}, number = {3}, year = {2008}, doi = {10.1051/cocv:2007062}, mrnumber = {2434069}, zbl = {1157.35415}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007062/} }
TY - JOUR AU - Mehrenberger, Michel AU - Loreti, Paola TI - An Ingham type proof for a two-grid observability theorem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 604 EP - 631 VL - 14 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007062/ DO - 10.1051/cocv:2007062 LA - en ID - COCV_2008__14_3_604_0 ER -
%0 Journal Article %A Mehrenberger, Michel %A Loreti, Paola %T An Ingham type proof for a two-grid observability theorem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 604-631 %V 14 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007062/ %R 10.1051/cocv:2007062 %G en %F COCV_2008__14_3_604_0
Mehrenberger, Michel; Loreti, Paola. An Ingham type proof for a two-grid observability theorem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 604-631. doi : 10.1051/cocv:2007062. http://www.numdam.org/articles/10.1051/cocv:2007062/
[1] Boundary controllability of a linear semi-discrete 1D wave equation derived from a mixed finite element method. Numer. Math. 102 (2006) 413-462. | MR | Zbl
and ,[2] A numerical approach to the exact boundary controllability of the wave equation (I), Dirichlet controls: Description of the numerical methods. Japan. J. Appl. Math. 7 (1990) 1-76. | MR | Zbl
, and ,[3] Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. | MR | Zbl
,[4] Propiedades cualitativas de esquemas numéricos de aproximción de ecuaciones de difusión y de dispersión. Ph.D. thesis, Universidad Autónoma de Madrid, Spain (2006).
,[5] Boundary observability for the space discretization of the 1D wave equation. ESAIM: M2AN 33 (1999) 407-438. | Numdam | MR | Zbl
and ,[6] Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41 (1936) 367-379. | MR | Zbl
,[7] Exact Controllability and Stabilization. The Multiplier Method. Wiley, Chichester; Masson, Paris (1994). | MR | Zbl
,[8] Fourier Series in Control Theory, Springer Monographs in Mathematics. Springer-Verlag, New York (2005). | MR | Zbl
and ,[9] Contrôlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte. Masson, Paris, RMA 8 (1988). | MR | Zbl
,[10] Partial exact controllability for spherical membranes. SIAM J. Control Optim. 35 (1997) 641-653. | MR | Zbl
and ,[11] Uniform boundary controllability of a semi-discrete 1D wave equation. Numer. Math. 91 (2002) 723-766. | MR | Zbl
,[12] Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Cont. Optim. 35 (1997) 1614-1638. | MR | Zbl
and ,[13] Family of implicit and controllable schemes for the 1D wave equation. C. R. Acad. Sci. Paris Sér. I 339 (2004) 733-738. | MR | Zbl
,[14] Numerical methods for the analysis of the propagation, observation and control of waves. Ph.D. thesis, Universidad Complutense Madrid, Spain (2003). Available at http://www.uam.es/proyectosinv/cen/indocumentos.html
,[15] Convergence of a multigrid method for the controllability of a 1D wave equation. C. R. Acad. Sci. Paris, Sér. I 338 (2004) 413-418. | MR | Zbl
and ,[16] Discrete Ingham inequalities and applications. SIAM J. Numer. Anal. 44 (2006) 412-448. | MR | Zbl
and ,[17] Propagation, observation, control and numerical approximation of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197-243. | MR | Zbl
,[18] Control and numerical approximation of the wave and heat equations, in Proceedings of the ICM 2006, Vol. III, “Invited Lectures", European Mathematical Society Publishing House, M. Sanz-Solé et al. Eds. (2006) 1389-1417. | MR | Zbl
,Cité par Sources :