Inversion in indirect optimal control of multivariable systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 294-317.

This paper presents the role of vector relative degree in the formulation of stationarity conditions of optimal control problems for affine control systems. After translating the dynamics into a normal form, we study the hamiltonian structure. Stationarity conditions are rewritten with a limited number of variables. The approach is demonstrated on two and three inputs systems, then, we prove a formal result in the general case. A mechanical system example serves as illustration.

DOI : 10.1051/cocv:2007054
Classification : 34C20, 34H05, 49K15, 93C10, 93C35
Mots-clés : optimal control, inversion, adjoint states, normal form
@article{COCV_2008__14_2_294_0,
     author = {Petit, Nicolas and Chaplais, Fran\c{c}ois},
     title = {Inversion in indirect optimal control of multivariable systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {294--317},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {2},
     year = {2008},
     doi = {10.1051/cocv:2007054},
     mrnumber = {2394512},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2007054/}
}
TY  - JOUR
AU  - Petit, Nicolas
AU  - Chaplais, François
TI  - Inversion in indirect optimal control of multivariable systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
SP  - 294
EP  - 317
VL  - 14
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2007054/
DO  - 10.1051/cocv:2007054
LA  - en
ID  - COCV_2008__14_2_294_0
ER  - 
%0 Journal Article
%A Petit, Nicolas
%A Chaplais, François
%T Inversion in indirect optimal control of multivariable systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 294-317
%V 14
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2007054/
%R 10.1051/cocv:2007054
%G en
%F COCV_2008__14_2_294_0
Petit, Nicolas; Chaplais, François. Inversion in indirect optimal control of multivariable systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 294-317. doi : 10.1051/cocv:2007054. http://www.numdam.org/articles/10.1051/cocv:2007054/

[1] A.A. Agrachev and A.V. Sarychev, On abnormal extremals for Lagrange variational problems. J. Math. Systems Estim. Control 1 (1998) 87-118. | MR | Zbl

[2] S.K. Agrawal and N. Faiz, A new efficient method for optimization of a class of nonlinear systems without Lagrange multipliers. J. Optim. Theor. Appl 97 (1998) 11-28. | MR | Zbl

[3] U.M. Ascher, J. Christiansen and R.D. Russel, Collocation software for boundary-value ODE's. ACM Trans. Math. Software 7 (1981) 209-222. | Zbl

[4] U.M. Ascher, R.M.M. Mattheij and R.D. Russell, Numerical solution of boundary value problems for ordinary differential equations. Prentice Hall Series in Computational Mathematics Prentice Hall, Inc., Englewood Cliffs, NJ (1988). | MR | Zbl

[5] U.M. Ascher, R.M.M. Mattheij and R.D. Russell, Numerical solution of boundary value problems for ordinary differential equations, Classics in Applied Mathematics 13. Society for Industrial and Applied Mathematics (SIAM) (1995). | MR | Zbl

[6] J.T. Betts, Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn 21 (1998) 193-207. | Zbl

[7] J.T. Betts, Practical methods for optimal control using nonlinear programming, Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001). | MR | Zbl

[8] B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Mathématiques & applications 40. Springer-Verlag-Berlin-Heidelberg-New York (2003). | MR | Zbl

[9] A.E. Bryson and Y.C. Ho, Applied Optimal Control. Ginn and Company (1969).

[10] R. Bulirsch, F. Montrone and H.J. Pesch, Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy. J. Optim. Theor. Appl 70 (1991) 223-254. | MR | Zbl

[11] R. Bulirsch, E. Nerz, H.J. Pesch and O. Von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider, in Optimal Control, R. Bulirsch, A. Miele, J. Stoer and K.H. Well Eds., International Series of Numerical Mathematics, Birkhäuser 111 (1993). | MR | Zbl

[12] F. Bullo and A.D. Lewis, Geometric Control of Mechanical Systems, Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics 49. Springer-Verlag (2004). | MR | Zbl

[13] C.I. Byrnes and A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Control 36 (1991) 1122-1137. | MR | Zbl

[14] F. Chaplais and N. Petit, Inversion in indirect optimal control2003).

[15] M. El-Kady, A Chebyshev finite difference method for solving a class of optimal control problems. Int. J. Comput. Math 80 (2003) 883-895. | MR | Zbl

[16] F. Fahroo and I.M. Ross, Direct trajectory optimization by a Chebyshev pseudo-spectral method. J. Guid. Control Dyn 25 (2002) 160-166.

[17] N. Faiz, S.K. Agrawal and R.M. Murray, Differentially flat systems with inequality constraints: An approach to real-time feasible trajectory generation. J. Guid. Control Dyn 24 (2001) 219-227.

[18] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 61 (1995) 1327-1361. | MR | Zbl

[19] M. Fliess, J. Lévine, P. Martin and P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control 44 (1999) 922-937. | MR | Zbl

[20] P.E. Gill, W. Murray, M.A. Saunders and M.A. Wright, User's Guide for NPSOL 5.0: A Fortran Package for Nonlinear Programming. Systems Optimization Laboratory, Stanford University, Stanford, CA 94305 (1998).

[21] C. Hargraves and S. Paris, Direct trajectory optimization using nonlinear programming and collocation. AIAA J. Guid. Control 10 (1987) 338-342. | Zbl

[22] A. Isidori, Nonlinear Control Systems. Springer, New York, 2nd edn. (1989).

[23] A. Isidori, Nonlinear Control Systems II. Springer, London-Berlin-Heidelberg (1999). | MR

[24] D.G. Luenberger, Optimization by vector spaces methods. Wiley-Interscience (1997). | MR | Zbl

[25] M.B. Milam, Real-time optimal trajectory generation for constrained systems. Ph.D. thesis, California Institute of Technology (2003).

[26] M.B. Milam, K. Mushambi and R.M. Murray, A new computational approach to real-time trajectory generation for constrained mechanical systems, in IEEE Conference on Decision and Control (2000).

[27] M.B. Milam, R. Franz and R.M. Murray, Real-time constrained trajectory generation applied to a flight control experiment, in Proc. of the IFAC World Congress (2002).

[28] R. Montgomery, Abnormal minimizers. SIAM J. Control Optim 32 (1994) 1605-1620. | MR | Zbl

[29] R.M. Murray, J. Hauser, A. Jadbabaie, M.B. Milam, N. Petit, W.B. Dunbar and R. Franz, Online control customization via optimization-based control, in Software-Enabled Control, Information technology for dynamical systems, T. Samad and G. Balas Eds., Wiley-Interscience (2003) 149-174.

[30] T. Neckel, C. Talbot and N. Petit, Collocation and inversion for a reentry optimal control problem, in Proc. of the 5th Intern. Conference on Launcher Technology (2003).

[31] H. Nijmeijer and A.J. Van Der Schaft, Nonlinear Dynamical Control Systems. Springer-Verlag (1990). | MR | Zbl

[32] J. Oldenburg and W. Marquardt, Flatness and higher order differential model representations in dynamic optimization. Comput. Chem. Eng 26 (2002) 385-400.

[33] N. Petit, M.B. Milam and R.M. Murray, Inversion based constrained trajectory optimization2001).

[34] I.M. Ross and F. Fahroo, Pseudospectral methods for optimal motion planning of differentially flat systems2002).

[35] I.M. Ross, J. Rea and F. Fahroo, Exploiting higher-order derivatives in computational optimal control, in Proc. of the 2002 IEEE Mediterranean Conference (2002).

[36] H. Seywald, Trajectory optimization based on differential inclusion. J. Guid. Control Dyn 17 (1994) 480-487. | MR | Zbl

[37] H. Seywald and R.R. Kumar, Method for automatic costate calculation. J. Guid. Control Dyn 19 (1996) 1252-1261. | Zbl

[38] H. Shen and P. Tsiotras, Time-optimal control of axi-symmetric rigid spacecraft using two controls. J. Guid. Control Dyn 22 (1999) 682-694.

[39] H. Sira-Ramirez and S.K. Agrawal, Differentially Flat Systems. Control Engineering Series, Marcel Dekker (2004). | Zbl

[40] M.C. Steinbach, Optimal motion design using inverse dynamics. Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1997).

[41] M.J. Van Nieuwstadt. Trajectory generation for nonlinear control systems. Ph.D. thesis, California Institute of Technology (1996).

[42] O. Von Stryk and R. Bulirsch, Direct and indirect methods for trajectory optimization. Ann. Oper. Res 37 (1992) 357-373. | MR | Zbl

Cité par Sources :