Dans ce travail, nous donnons une estimation logarithmique des données de la solution , d’un problème hyperbolique avec condition aux limites de type Neumann, par la trace de restreinte à un ouvert du bord, pendant un temps suffisamment grand qui nous permet d’estimer la fonction de coût de ce problème.
This work proposes a logarithmic estimation of the initial values of the solution of a hyperbolic problem, with Neumann boundary conditions, using the trace of restricted to the neighbourhood of the boundary, during a time sufficiently large for estimating the cost function of the problem.
Mots-clés : problème hyberbolique, contrôle, fonction de coût, inégalité de Carleman
@article{COCV_2008__14_2_318_0, author = {Ouksel, Leila}, title = {In\'egalit\'e d'observabilit\'e du type logarithmique et estimation de la fonction de co\^ut des solutions des \'equations hyperboliques}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {318--342}, publisher = {EDP-Sciences}, volume = {14}, number = {2}, year = {2008}, doi = {10.1051/cocv:2007052}, mrnumber = {2394513}, zbl = {1139.35016}, language = {fr}, url = {http://www.numdam.org/articles/10.1051/cocv:2007052/} }
TY - JOUR AU - Ouksel, Leila TI - Inégalité d'observabilité du type logarithmique et estimation de la fonction de coût des solutions des équations hyperboliques JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 318 EP - 342 VL - 14 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007052/ DO - 10.1051/cocv:2007052 LA - fr ID - COCV_2008__14_2_318_0 ER -
%0 Journal Article %A Ouksel, Leila %T Inégalité d'observabilité du type logarithmique et estimation de la fonction de coût des solutions des équations hyperboliques %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 318-342 %V 14 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007052/ %R 10.1051/cocv:2007052 %G fr %F COCV_2008__14_2_318_0
Ouksel, Leila. Inégalité d'observabilité du type logarithmique et estimation de la fonction de coût des solutions des équations hyperboliques. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 318-342. doi : 10.1051/cocv:2007052. http://www.numdam.org/articles/10.1051/cocv:2007052/
[1] Non unicité du problème de Cauchy. Ann. Math 117 (1983) 77-108. | MR | Zbl
,[2] A non uniqueness result for operators of principal type. Math. Z 220 (1995) 561-568. | MR | Zbl
and ,[3] Dépendence non linéaire des données de Cauchy pour des solutions des équations aux dérivées partielles. J. Math. Pures. Appl 66 (1987) 127-138. | MR | Zbl
,[4] Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim 30 (1992) 1024-1065. | MR | Zbl
, and ,[5] Contrôle de l'équation des plaques en présence d'obstacles strictement convexes. Mém. Soc. Math. France (N. S.) 55, Marseilles (1993). | Numdam | Zbl
,[6] Optimal decay rates of the energy of an hyperbolic-parabolic system coupled by an interface. European Union Projects “Smart System” (2002).
,[7] On the optimality of the observability inequality for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear). | Numdam | MR
, and ,[8] Résultats de contrôlabilité exacte interne pour l'équation de Schrödinger et leurs limites asymptotiques : Application à certaines équations de plaques vibrantes. Asym. Anal 5 (1992) 343-379. | MR | Zbl
,[9] The cost of approximate controllability for heat equations: The linear case. Adv. Diff. Equa 5 (2000) 465-514. | MR | Zbl
and ,[10] Controllability of evolution equations. Lect. Notes Ser 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). | MR | Zbl
and ,[11] Linear partiel differential operators. Springer-Verlag, Berlin (1963). | Zbl
,[12] On the uniqueness of the Cauchy problem under partial analyticity asumptions. Springer-Verlag (1996). | MR | Zbl
,[13] On the uniquenss of the solution of the Cauchy problem. Sov. Math. Dokl 22 (1980) 639-642. | MR | Zbl
,[14] Continous dependence on data for solution of partial differential equations with prescribed bound. Comm. Pure. Appl. Math 17 (1960) 551-585. | MR | Zbl
,[15] Optimal regularity, exact controllability and uniform stabilisation of Schrödinger equation with Dirichlet control. Diff. Integral. Equa 5 (1992) 521-535. | MR | Zbl
and ,[16] Contrôle de l'équation de Schrödinger. J. Math. Pures. Appl 71 (1992) 267-291. | Zbl
,[17] Contrôle analytique I : estimation a priori. Duk. Math. J 68 (1992) 1-30. | MR | Zbl
,[18] Contrôle exacte de l'équation de la chaleur. Comm Partial. Diff. Equa 20 (1995) 335-356. | MR | Zbl
et ,[19] Stabilisation de l'équation des ondes par le bord Duk. Math. J. 86 (1997) 465-491. | MR | Zbl
et ,[20] Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués. Masson Collection, RMA, Paris (1988). | Zbl
,[21] Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris (1968). | MR | Zbl
et ,[22] Exact controllability for Schrödinger equation. SIAM J. Control. Optim 32 (1994) 24-34. | MR | Zbl
,[23] Geometric bounds on the growth rate of null-controllability cost of the heat equation in small time. J. Diff. Eq. 2004 (2004) 202-226. | MR | Zbl
,[24] On the null-controllability of the heat equation in unbounded domains. Bull. Sci. Math 129 (2005) 175-185. | MR | Zbl
,[25] Observability and control of Schrödinger equation. SIAM J. Control Optim 40 (2001) 211-230. | MR | Zbl
,[26] Note on the cost of the approximate controllability for the heat equation with potentiel. J. Math. Anal. Appl. 295 (2004) 527-538. | MR | Zbl
,[27] Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures. Appl 84 (2005) 407-470. | MR | Zbl
, and ,[28] Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm Partial. Diff. Equa 16 (1991) 789-800. | Zbl
,[29] Fonction de coût et contrôle des solutions des équations hyperboliques Asym. Anal. 10 (1995) 95-115. | MR | Zbl
,[30] Uniqueness in the Cauchy problem for operator with partially holomorphic coefficients. Inventiones Mathematice 131 (1998) 493-539. | MR | Zbl
and ,[31] A unified boundary contrllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math 52 (1973) 189-212. | MR | Zbl
,[32] Unique continuation for solution to P.D.E's between Hörmander theorem and Holmgren's theorem Comm. Part. Diff. Eq 20 (1995) 855-884. | MR | Zbl
,[33] Carleman estimates and unique continuation for solutions to boundary-value problems J. Math. Pures. Appl 75 (1996) 367-408. | MR | Zbl
,[34] Unique continuation for partial differential operators with partially analytic coefficients J. Math. Pures. Appl 78 (1999) 505-521. | MR | Zbl
,[35] Polinomial decay and control of a 1-d model for fluid-structure interaction. C. R. Acad. Sci., Paris, Ser. I 336 (2003) 745-750. | MR | Zbl
and ,[36] Control, observation and polynomial decay for a coupled heat-wave system. C. R. Acad. Sci., Paris, Ser. I 336 (2003) 823-828. | MR | Zbl
and ,[37] Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. Anal 184 (2007) 49-120. | MR
and ,Cité par Sources :