We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function of the particle and the control is the length of the potential well. We prove the following controllability result : given close enough to an eigenstate corresponding to the length and close enough to another eigenstate corresponding to the length , there exists a continuous function with , such that and , and which moves the wave function from to in time . In particular, we can move the wave function from one eigenstate to another one by acting on the length of the potential well in a suitable way. Our proof relies on local controllability results proved with moment theory, a Nash-Moser implicit function theorem and expansions to the second order.
Mots clés : controllability, Schrödinger equation, Nash-Moser theorem, moment theory
@article{COCV_2008__14_1_105_0, author = {Beauchard, Karine}, title = {Controllability of a quantum particle in a {1D} variable domain}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {105--147}, publisher = {EDP-Sciences}, volume = {14}, number = {1}, year = {2008}, doi = {10.1051/cocv:2007047}, mrnumber = {2375753}, zbl = {1132.35446}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007047/} }
TY - JOUR AU - Beauchard, Karine TI - Controllability of a quantum particle in a 1D variable domain JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 105 EP - 147 VL - 14 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007047/ DO - 10.1051/cocv:2007047 LA - en ID - COCV_2008__14_1_105_0 ER -
%0 Journal Article %A Beauchard, Karine %T Controllability of a quantum particle in a 1D variable domain %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 105-147 %V 14 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007047/ %R 10.1051/cocv:2007047 %G en %F COCV_2008__14_1_105_0
Beauchard, Karine. Controllability of a quantum particle in a 1D variable domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 1, pp. 105-147. doi : 10.1051/cocv:2007047. http://www.numdam.org/articles/10.1051/cocv:2007047/
[1] Notions of controllability for bilinear multilevel quantum systems. IEEE Trans. Automat. Control 48 (2003) 1399-1403. | MR
and ,[2] Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels (1991). | MR | Zbl
and ,[3] Controllability of quantum mechanical systems by root space decomposition of su(n). J. Math. Phys. 43 (2002) 2051-2062. | MR | Zbl
,[4] Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982). | MR | Zbl
, and ,[5] A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Matematica (N.S.) 63 (2006) 293-325. | EuDML | MR | Zbl
,[6] Constructive solution of a bilinear control problem. C.R. Math. Acad. Sci. Paris 342 (2006) 119-124. | MR | Zbl
and ,[7] Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control. J. Differential Equations 216 (2005) 188-222. | MR | Zbl
, and ,[8] Local controllability of a 1-D beam equation. SIAM J. Control Optim. (to appear). | MR | Zbl
,[9] Local Controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851-956. | MR | Zbl
,[10] Controllability of a quantum particle in a moving potential well. J. Functional Analysis 232 (2006) 328-389. | MR
and ,[11] Lie theory and control systems defined on spheres. SIAM J. Appl. Math. 25 (1973) 213-225. | MR | Zbl
,[12] Contrôle optimal bilinéaire d'une équation de Schrödinger. C.R. Acad. Sci. Paris, Série I 330 (2000) 567-571. | MR | Zbl
, and ,[13] Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295-312. | MR | Zbl
,[14] Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris 317 (1993) 271-276. | MR | Zbl
,[15] On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | MR | Zbl
,[16] Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations. ESAIM: COCV 8 (2002) 513-554. | Numdam | MR | Zbl
,[17] On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well. C.R. Acad. Sci., Série I 342 (2006) 103-108. | MR | Zbl
,[18] Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6 (2004) 367-398. | MR | Zbl
and ,[19] Global exact controllability of the 2D Navier-Stokes equation on a manifold without boundary. Russ. J. Math. Phys. 4 (1996) 429-448. | MR | Zbl
and ,[20] Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys 54 (1999) 565-618. | MR | Zbl
and ,[21] On the controllability of the 1D isentropic Euler equation. J. European Mathematical Society 9 (2007) 427-486. | MR | Zbl
,[22] Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44. | Numdam | MR | Zbl
,[23] On the controllability of the Vlasov-Poisson system. J. Differential Equations 195 (2003) 332-379. | MR | Zbl
,[24] Partial Differential Relations. Springer-Verlag, Berlin-New York-London (1986). | MR | Zbl
,[25] Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. | MR | Zbl
,[26] On the Nash-Moser Implicit Function Theorem. Annales Academiae Scientiarum Fennicae (1985) 255-259. | MR | Zbl
,[27] On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83-95. | Numdam | MR | Zbl
,[28] Limitations on the control of Schrödinger equations. ESAIM: COCV 12 (2006) 615-635. | Numdam | MR
, and ,[29] Perturbation Theory for Linear operators. Springer-Verlag, Berlin, New-York (1966). | MR | Zbl
,[30] On moment theory and controllability of one-dimensional vibrating systems and heating processes. Springer - Verlag (1992). | MR | Zbl
,[31] Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differential Integral Equations 5 (1992) 571-535. | MR | Zbl
and ,[32] Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carlemann estimates. J. Inverse Ill Posed-Probl. 12 (2004) 183-231. | MR | Zbl
, and ,[33] Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. | Zbl
,[34] Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24-34. | Zbl
[35] Controllability of quantum harmonic oscillators. IEEE Trans. Automat. Control 49 (2004) 745-747. | MR
and ,[36] Control of systems without drift via generic loops. IEEE Trans. Automat. Control 40 (1995) 1210-1219. | MR | Zbl
,[37] On the controllability of bilinear quantum systems, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, C. Le Bris and M. Defranceschi Eds., Lect. Notes Chemistry 74, Springer (2000). | MR | Zbl
,[38] Remarks on the controllability of the Schrödinger equation. CRM Proc. Lect. Notes 33 (2003) 193-211. | MR
,Cité par Sources :