We prove a partial regularity result for local minimizers of variational integrals of the type , assuming that the integrand satisfies growth conditions.
Mots-clés : partial regularity, non standard growth, higher order derivatives
@article{COCV_2007__13_4_692_0, author = {Carozza, Menita and Passarelli Di Napoli, Antonia}, title = {Partial regularity for anisotropic functionals of higher order}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {692--706}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007033}, mrnumber = {2351398}, zbl = {1130.35317}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007033/} }
TY - JOUR AU - Carozza, Menita AU - Passarelli Di Napoli, Antonia TI - Partial regularity for anisotropic functionals of higher order JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 692 EP - 706 VL - 13 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007033/ DO - 10.1051/cocv:2007033 LA - en ID - COCV_2007__13_4_692_0 ER -
%0 Journal Article %A Carozza, Menita %A Passarelli Di Napoli, Antonia %T Partial regularity for anisotropic functionals of higher order %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 692-706 %V 13 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007033/ %R 10.1051/cocv:2007033 %G en %F COCV_2007__13_4_692_0
Carozza, Menita; Passarelli Di Napoli, Antonia. Partial regularity for anisotropic functionals of higher order. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 692-706. doi : 10.1051/cocv:2007033. http://www.numdam.org/articles/10.1051/cocv:2007033/
[1] Partial regularity under anisotropic growth conditions. J. Diff. Eq. 107 (1994) 46-67. | Zbl
and ,[2] Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lect. Notes Math. 1818, Springer-Verlag, Berlin (2003). | MR | Zbl
,[3] Higher order variational problems with non-standard growth condition in dimension two: plates with obstacles. Ann. Acad. Sci. Fennicae Math. 26 (2001) 509-518. | Zbl
and ,[4] Strong minimizers of Blake & Zisserman functional. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 (1997) 257-285. | Numdam | Zbl
, and ,[5] Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201 (1999) 61-79. | Zbl
, and ,[6] Direct methods in the calculus of variations. Appl. Math. Sci. 78, Springer Verlag (1989). | MR | Zbl
,[7] Higher order quasiconvexity reduces to quasiconvexity Arch. Rational Mech. Anal. 171 (2004) 55-81. | Zbl
, , and ,[8] Regularity results for minimizers of irregular integrals with growth. Forum Math. 14 (2002) 245-272. | Zbl
, and ,[9] Sharp regularity for functionals with growth. J. Diff. Eq. 204 (2004) 5-55. | Zbl
, and ,[10] Relaxation of multiple integrals in Sobolev spaces below the growth exponent for the energy density. Ann. Inst. H. Poincaré - Anal. Non Linéaire 14 (1997) 309-338. | Numdam | Zbl
and ,[11] From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma (7) (2005), Proc. Conf. “Trends in the Calculus of Variations”, E. Acerbi and G. Mingione Eds., 45-74. | Zbl
and ,[12] Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud. 105 (1983), Princeton Univ. Press. | MR | Zbl
,[13] Growth conditions and regularity, a counterexample. Manu. Math. 59 (1987) 245-248. | Zbl
,[14] Metodi diretti in calcolo delle variazioni. U.M.I. (1994).
,[15] A remark on partial regularity of minimizers of quasiconvex integrals of higher order. Rend. Ist. Mat di Trieste XXXII (2000) 1-24. | Zbl
,[16] Partial regularity results for minimizers of quasiconvex functionals of higher order. Ann. Inst. H. Poincaré - Anal. Non Linéaire 19 (2002) 81-112. | Numdam | Zbl
,[17] Un example de solution discontinue d'un probéme variationel dans le cas scalaire. Preprint Ist. U. Dini, Firenze (1987-1988).
,[18] Regularity of minimizers of integrals of the calculus of Variations with non-standard growth conditions. Arch. Rat. Mech. Anal. 105 (1989) 267-284. | Zbl
,[19] Regularity and existence of solutions of elliptic equations with growth conditions. J. Diff. Eq. 90 (1991) 1-30. | Zbl
,[20] Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Normale Sup. Pisa, Cl. Sci. 23 (1996) 1-25. | Numdam | Zbl
,[21] Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. 157 (2003) 715-742. | Zbl
and ,[22] A regularity result for a class of anisotropic systems. Rend. Ist. Mat di Trieste (1997) 13-31. | Zbl
and ,Cité par Sources :