In [Progress Math. 233 (2005)], David suggested the existence of a new type of global minimizers for the Mumford-Shah functional in . The singular set of such a new minimizer belongs to a three parameters family of sets . We first derive necessary conditions satisfied by global minimizers of this family. Then we are led to study the first eigenvectors of the Laplace-Beltrami operator with Neumann boundary conditions on subdomains of with three reentrant corners. The necessary conditions are constraints on the eigenvalue and on the ratios between the three singular coefficients of the associated eigenvector. We use numerical methods (Singular Functions Method and Moussaoui’s extraction formula) to compute the eigenvalues and the singular coefficients. We conclude that there is no for which the necessary conditions are satisfied and this shows that the hypothesis was wrong.
Mots-clés : Mumford-Shah functional, numerical analysis, boundary value problems for second-order, elliptic equations in domains with corners
@article{COCV_2007__13_3_553_0, author = {Merlet, Beno{\^\i}t}, title = {Numerical study of a new global minimizer for the {Mumford-Shah} functional in $\mathbb {R}^3$}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {553--569}, publisher = {EDP-Sciences}, volume = {13}, number = {3}, year = {2007}, doi = {10.1051/cocv:2007026}, mrnumber = {2329176}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007026/} }
TY - JOUR AU - Merlet, Benoît TI - Numerical study of a new global minimizer for the Mumford-Shah functional in $\mathbb {R}^3$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 553 EP - 569 VL - 13 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007026/ DO - 10.1051/cocv:2007026 LA - en ID - COCV_2007__13_3_553_0 ER -
%0 Journal Article %A Merlet, Benoît %T Numerical study of a new global minimizer for the Mumford-Shah functional in $\mathbb {R}^3$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 553-569 %V 13 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007026/ %R 10.1051/cocv:2007026 %G en %F COCV_2007__13_3_553_0
Merlet, Benoît. Numerical study of a new global minimizer for the Mumford-Shah functional in $\mathbb {R}^3$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 3, pp. 553-569. doi : 10.1051/cocv:2007026. http://www.numdam.org/articles/10.1051/cocv:2007026/
[1] Approximation of solutions and singularities coefficients for an elliptic problem in a plane polygonal domain. Note Technique, E.N.S. Lyon (1989).
and ,[2] On the regularity of edges in image segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 485-528. | Numdam | Zbl
,[3] Coefficients of the singularities for elliptic boundary value problems on domains with conical points. III. Finite element methods on polygonal domains. SIAM J. Numer. Anal. 29 (1992) 136-155. | Zbl
, , and ,[4] The singular complement method for 2d scalar problems. C. R. Math. Acad. Sci. Paris 336 (2003) 353-358. | Zbl
and ,[5] Elliptic boundary value problems on corner domains, Lect. Notes Math. 1341. Smoothness and asymptotics of solutions. Springer-Verlag, Berlin (1988). | MR | Zbl
,[6] Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques. I. Résultats généraux pour le problème de Dirichlet. RAIRO Modél. Math. Anal. Numér. 24 (1990) 27-52. | Numdam | Zbl
, , and ,[7] Coefficients des singularités pour des problèmes aux limites elliptiques sur un domaine à points coniques. II. Quelques opérateurs particuliers. RAIRO Modél. Math. Anal. Numér. 24 (1990) 343-367. | Numdam | Zbl
, , and ,[8] Singular sets of minimizers for the Mumford-Shah functional. Progress Math. 233, Birkhäuser Verlag, Basel (2005). | MR | Zbl
,[9] Existence theorem for a minimum problem with free discontinuity set. Arch. Rational. Mech. Anal. 108 (1989) 195-218. | Zbl
, and ,[10] Éléments finis: théorie, applications, mise en œuvre. Math. Appl. 36, Springer-Verlag, Berlin (2002). | Zbl
and ,[11] Singularities in boundary value problems, Recherches Math. Appl. 22. Masson, Paris (1992). | MR | Zbl
,[12] Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16 (1967) 209-292. | Zbl
,[13] Sur l'approximation des solutions du problème de Dirichlet dans un ouvert avec coins, in Singularities and constructive methods for their treatment (Oberwolfach, 1983). Lect. Notes Math. 1121, Springer, Berlin (1985) 199-206. | Zbl
,[14] Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | Zbl
and ,Cité par Sources :