Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 3, pp. 484-502.

In this paper we prove a comparison result between semicontinuous viscosity subsolutions and supersolutions to Hamilton-Jacobi equations of the form u t +H(x,Du)=0 in n ×(0,T) where the hamiltonian H may be noncoercive in the gradient Du. As a consequence of the comparison result and the Perron’s method we get the existence of a continuous solution of this equation.

DOI : 10.1051/cocv:2007021
Classification : 70H20, 49L25, 35B05
Mots-clés : Hamilton-Jacobi equations, sub-riemannian metric, viscosity solution, comparison principle
@article{COCV_2007__13_3_484_0,
     author = {Cutr{\`\i}, Alessandra and Lio, Francesca Da},
     title = {Comparison and existence results for evolutive non-coercive first-order {Hamilton-Jacobi} equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {484--502},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {3},
     year = {2007},
     doi = {10.1051/cocv:2007021},
     mrnumber = {2329172},
     zbl = {1125.70013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2007021/}
}
TY  - JOUR
AU  - Cutrì, Alessandra
AU  - Lio, Francesca Da
TI  - Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2007
SP  - 484
EP  - 502
VL  - 13
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2007021/
DO  - 10.1051/cocv:2007021
LA  - en
ID  - COCV_2007__13_3_484_0
ER  - 
%0 Journal Article
%A Cutrì, Alessandra
%A Lio, Francesca Da
%T Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2007
%P 484-502
%V 13
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2007021/
%R 10.1051/cocv:2007021
%G en
%F COCV_2007__13_3_484_0
Cutrì, Alessandra; Lio, Francesca Da. Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 3, pp. 484-502. doi : 10.1051/cocv:2007021. http://www.numdam.org/articles/10.1051/cocv:2007021/

[1] O. Alvarez, Bounded-from-below viscosity solutions of Hamilton-Jacobi equations. Differential Integral Equations 10 (1997) 419-436. | Zbl

[2] H. Attouch, Variational convergence for functions and operators. Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA (1984). | MR | Zbl

[3] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997). | MR | Zbl

[4] M. Bardi and F. Da Lio, On the Bellman equation for some unbounded control problems. NoDEA 4 (1997) 491-510. | Zbl

[5] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris (1994). | MR | Zbl

[6] E.N. Barron and R. Jensen, Generalized viscosity solutions for Hamilton-Jacobi equations with time-measurable Hamiltonians. J. Differential Equations 68 (1987) 10-21. | Zbl

[7] E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex hamiltonians. Commun. Partial Differ. Equ. 15 (1990) 1713-1742. | Zbl

[8] A. Bellaiche and J.-J. Risler, Sub-Riemannian geometry, Progress in Mathematics 144, Birkhäuser Verlag, Basel (1996). | MR

[9] A. Bensoussan, Stochastic control by functional analysis methods, Studies in Mathematics and its Applications 11, North-Holland Publishing Co., Amsterdam (1982) | MR | Zbl

[10] I. Birindelli and J. Wigniolle, Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Commun. Pure Appl. Anal. 2 (2003) 461-479. | Zbl

[11] R.W. Brockett, Control theory and singular Riemannian geometry, in: New Directions in Applied Mathematics (Cleveland, Ohio, 1980) Springer, New York-Berlin (1982) 11-27. | Zbl

[12] R.W. Brockett, Pattern generation and the control of nonlinear systems. IEEE Trans. Automatic Control 48 (2003) 1699-1711.

[13] P. Cannarsa and G. Da Prato, Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations. SIAM J. Control Optim. 27 (1989) 861-875. | Zbl

[14] I. Capuzzo Dolcetta, The Hopf solution of Hamilton-Jacobi equations. Elliptic and parabolic problems (Rolduc/Gaeta) (2001) 343-351. | Zbl

[15] I. Capuzzo Dolcetta, Representations of solutions of Hamilton-Jacobi equations. Progr. Nonlinear Differential Equations Appl. 54 (2003) 79-90. | Zbl

[16] I. Capuzzo Dolcetta and H. Ishii, Hopf formulas for state-dependent Hamilton-Jacobi equations. Preprint.

[17] A. Cutrì, Problemi semilineari ed integro-differenziali per sublaplaciani. Ph.D. Thesis, Universitá di Roma Tor Vergata (1997).

[18] F. Da Lio and O. Ley, Uniqueness Results for Second Order Bellman-Isaacs Equations under Quadratic Growth Assumptions and Applications, Quaderno 8, Dipartimento di Matematica, Università di Torino (2004). | Zbl

[19] F. Da Lio and W.M. Mceneaney, Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption. SIAM J. Control Optim 40 (2002) 1628-1661 (electronic). | Zbl

[20] C.L. Fefferman and D.H. Phong, Subelliptic eigenvalue problems, in Conference on Harmonic Analysis in Honor of A. Zygmund, Wadsworth Math. Series 2 (1983) 590-606 . | Zbl

[21] L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147-171. | Zbl

[22] H. Ishii, Perron's method for Hamilton-Jacobi equations. Duke Math. J. 55 (1987) 369-384. | Zbl

[23] H. Ishii, Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above. Appl. Anal. 67 (1997) 357-372. | Zbl

[24] D. Jerison and A. Sànchez-Calle, Subelliptic second order differential operator. Lect. Notes Math. Berlin-Heidelberg-New York 1277 (1987) 46-77. | Zbl

[25] J.J. Manfredi and B. Stroffolini, A version of the Hopf-Lax formula in the Heisenberg group. Comm. Partial Differ. Equ. 27 (2002) 1139-1159. | Zbl

[26] R. Monti and F. Serra Cassano, Surface measures in Carnot Caratheodory spaces. Calc. Var. Partial Differ. Equ. 13 (2001) 339-376. | Zbl

[27] A. Nagel, E.M. Stein and S. Wainger, Balls and metrics defined by vector fields. I: Basic properties. Acta Math. 155 (1985) 103-147. | Zbl

[28] F. Rampazzo and C. Sartori, Hamilton-Jacobi-Bellman equations with fast gradient-dependence. Indiana Univ. Math. J. 49 (2000) 1043-1077. | Zbl

[29] F. Rampazzo and H. Sussmann, Set-valued differentials and a nonsmooth version of Chow's theorem, in Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida (IEEE Publications, New York, 2001) 3 (2001) 2613-2618.

[30] B. Stroffolini, Homogenization of Hamilton-Jacobi Equations in Carnot Groups. ESAIM: COCV 13 (2007) 107-119. | Numdam | Zbl

[31] H.J. Sussmann, A general theorem on local controllability. SIAM J. Control. Optim. 25 (1987) 158-194. | Zbl

Cité par Sources :