We propose a necessary and sufficient condition about the existence of variations, i.e., of non trivial solutions to the differential inclusion .
Mots-clés : variations, differential inclusions, necessary conditions
@article{COCV_2007__13_2_331_0, author = {Bertone, Simone and Cellina, Arrigo}, title = {On the existence of variations, possibly with pointwise gradient constraints}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {331--342}, publisher = {EDP-Sciences}, volume = {13}, number = {2}, year = {2007}, doi = {10.1051/cocv:2007017}, mrnumber = {2306639}, zbl = {1124.49012}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007017/} }
TY - JOUR AU - Bertone, Simone AU - Cellina, Arrigo TI - On the existence of variations, possibly with pointwise gradient constraints JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 331 EP - 342 VL - 13 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007017/ DO - 10.1051/cocv:2007017 LA - en ID - COCV_2007__13_2_331_0 ER -
%0 Journal Article %A Bertone, Simone %A Cellina, Arrigo %T On the existence of variations, possibly with pointwise gradient constraints %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 331-342 %V 13 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007017/ %R 10.1051/cocv:2007017 %G en %F COCV_2007__13_2_331_0
Bertone, Simone; Cellina, Arrigo. On the existence of variations, possibly with pointwise gradient constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 331-342. doi : 10.1051/cocv:2007017. http://www.numdam.org/articles/10.1051/cocv:2007017/
[1] Mathematical methods of classical mechanics, Graduate Texts in Mathematics 60, Springer-Verlag, New York, Heidelber, Berlin. | MR | Zbl
,[2] Analyse fonctionnelle, théorie et applications. Masson, Paris (1983). | MR | Zbl
,[3] On minima of a functional of the gradient: necessary conditions. Nonlinear Anal. 20 (1993) 337-341. | Zbl
,[4] On minima of a functional of the gradient: sufficient conditions. Nonlinear Anal. 20 (1993) 343-347. | Zbl
,[5] On the validity of the maximum principle and of the Euler-Lagrange equation for a minimum problem depending on the gradient. SIAM J. Control Optim. 36 (1998) 1987-1998. | Zbl
and ,[6] Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, Rhode Island (1998). | MR | Zbl
,[7] Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (1999) 653. | MR | Zbl
and ,[8] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL (1992). | MR | Zbl
and ,[9] On Lindelöf's theorem in the theory of differential equations. Jap. J. Math. 16 (1939) 149-161. | JFM
,Cité par Sources :