We prove a relaxation theorem in BV for a non coercive functional with linear growth. No continuity of the integrand with respect to the spatial variable is assumed.
Mots-clés : lower semicontinuity, relaxation, BV-functions, blow-up
@article{COCV_2007__13_2_396_0, author = {Amar, Micol and Cicco, Virginia De and Fusco, Nicola}, title = {A relaxation result in {BV} for integral functionals with discontinuous integrands}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {396--412}, publisher = {EDP-Sciences}, volume = {13}, number = {2}, year = {2007}, doi = {10.1051/cocv:2007015}, mrnumber = {2306643}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007015/} }
TY - JOUR AU - Amar, Micol AU - Cicco, Virginia De AU - Fusco, Nicola TI - A relaxation result in BV for integral functionals with discontinuous integrands JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 396 EP - 412 VL - 13 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007015/ DO - 10.1051/cocv:2007015 LA - en ID - COCV_2007__13_2_396_0 ER -
%0 Journal Article %A Amar, Micol %A Cicco, Virginia De %A Fusco, Nicola %T A relaxation result in BV for integral functionals with discontinuous integrands %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 396-412 %V 13 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007015/ %R 10.1051/cocv:2007015 %G en %F COCV_2007__13_2_396_0
Amar, Micol; Cicco, Virginia De; Fusco, Nicola. A relaxation result in BV for integral functionals with discontinuous integrands. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 396-412. doi : 10.1051/cocv:2007015. http://www.numdam.org/articles/10.1051/cocv:2007015/
[1] Relaxation in BV for a class of functionals without continuity assumptions. NoDEA (to appear).
and ,[2] Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000). | MR | Zbl
, and ,[3] A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 51-98. | Zbl
, and ,[4] Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes Math., Longman, Harlow (1989). | Zbl
,[5] Integral representation on BV of -limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. | Zbl
,[6] An Introduction to -convergence. Birkhäuser, Boston (1993). | MR | Zbl
,[7] On -lower semicontinuity in BV. J. Convex Analysis 12 (2005) 173-185. | Zbl
, and ,[8] A chain rule formula in BV and its applications to lower semicontinuity. Calc. Var. Partial Differ. Equ. 28 (2007) 427-447. | Zbl
, and ,[9] A chain rule in and its applications to lower semicontinuity. Calc. Var. Partial Differ. Equ. 19 (2004) 23-51. | Zbl
and ,[10] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. | Zbl
and ,[11] Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101.
and ,[12] Lecture Notes on Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | Zbl
and ,[13] Geometric measure theory. Springer-Verlag, Berlin (1969). | MR | Zbl
,[14] Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617-635. | Zbl
and ,[15] On lower semicontinuity and relaxation. Proc. R. Soc. Edinb. Sect. A Math. 131 (2001) 519-565. | Zbl
and ,[16] Quasi-convex integrands and lower semicontinuity in . SIAM J. Math. Anal. 23 (1992) 1081-1098. | Zbl
and ,[17] Relaxation of quasiconvex functionals in BV for integrands . Arch. Rat. Mech. Anal. 123 (1993) 1-49. | Zbl
and ,[18] A remark on Serrin's Theorem. NoDEA 13 (2006) 425-433.
, and ,[19] Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). | MR | Zbl
,[20] An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal. 9 (2002) 475-502. | Zbl
and ,[21] On some sharp conditions for lower semicontinuity in . Diff. Int. Eq. 16 (2003) 51-76. | Zbl
, and ,[22] Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus & Nijhoff Publishers, Dordrecht (1985). | Zbl
and ,Cité par Sources :