This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière [Phys. Rev. A 64 (2001) 043611] to characterize the energy of vortex filaments in a rotationally forced Bose-Einstein condensate. This functional is derived as a
Mots-clés : Gross-Pitaevsky, vortices, gamma-convergence, Thomas-Fermi limit, rectifiable currents
@article{COCV_2007__13_1_35_0, author = {Jerrard, Robert L.}, title = {Local minimizers with vortex filaments for a {Gross-Pitaevsky} functional}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {35--71}, publisher = {EDP-Sciences}, volume = {13}, number = {1}, year = {2007}, doi = {10.1051/cocv:2007004}, mrnumber = {2282101}, zbl = {1111.35077}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2007004/} }
TY - JOUR AU - Jerrard, Robert L. TI - Local minimizers with vortex filaments for a Gross-Pitaevsky functional JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 35 EP - 71 VL - 13 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007004/ DO - 10.1051/cocv:2007004 LA - en ID - COCV_2007__13_1_35_0 ER -
%0 Journal Article %A Jerrard, Robert L. %T Local minimizers with vortex filaments for a Gross-Pitaevsky functional %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 35-71 %V 13 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007004/ %R 10.1051/cocv:2007004 %G en %F COCV_2007__13_1_35_0
Jerrard, Robert L. Local minimizers with vortex filaments for a Gross-Pitaevsky functional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 1, pp. 35-71. doi : 10.1051/cocv:2007004. https://www.numdam.org/articles/10.1051/cocv:2007004/
[1] On the shape of vortices for a rotating Bose-Einstein condensate. Phys. Rev. A 66 (2002) 023611.
and ,[2] Properties of a single vortex solution in a rotating Bose-Einstein condensate. C. R. Acad. Sci. Paris Ser. I 336 (2003) 713-718. | Zbl
and ,[3] Vortex energy and vortex bending for a rotating Bose-Einstein condensate. Phys. Rev. A 64 (2001) 043611.
and ,[4] Functions with prescribed singularities. J. Eur. Math. Soc. 5 (2003) 275-311. | Zbl
, and ,[5] Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math J. 54 (2005) 1411-1472.
, and ,[6] Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. I, II. Arch. Rational Mech. Anal. 142 (1998) 45-73, 75-98. | Zbl
and ,[7] Ginzburg-Landau Vortices. Birkhauser, New-York (1994). | MR | Zbl
, and ,[8] Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649-705. | Zbl
, , and ,[9] Measure Theory and Fine Properties of Functions. CRC Press, London (1992). | MR | Zbl
and ,[10] Geometric Measure Theory. Springer-Verlag, Berlin (1969). | MR | Zbl
,[11] Cartesian Currents in the Calculus of Variations. I, II. Springer-Verlag, New York (1998). | MR | Zbl
, and ,[12] The Jacobian and the Ginzburg-Landau functional. Cal. Var. 14 (2002) 151-191. | Zbl
and ,[13] Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions. Comm. Math. Phys. 249 (2004) 549-577. | Zbl
, , and ,[14] Local minimizers and singular perturbations. Proc. Royal Soc. Edin. 111A (1989) 69-84. | Zbl
and ,[15] Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1-26. | Zbl
and ,[16] Local minimizers with vortices to the Ginzburg-Landau system in 3-d. Comm. Pure Appl. Math 57 (2004) 99-125. | Zbl
, , and ,[17] Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 87 (2001) 210402.
, , , and ,
[18] Line vortices in the
[19] Dynamics of a single vortex line in a Bose-Einstein condensate. Phys. Rev. Lett. 89 (2002) 200403.
, , and ,[20] A product estimate for Ginzburg-Landau and corollaries. J. Funct. Anal. 211 (2004) 219-244. | Zbl
and .Cité par Sources :