This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière [Phys. Rev. A 64 (2001) 043611] to characterize the energy of vortex filaments in a rotationally forced Bose-Einstein condensate. This functional is derived as a -limit of scaled versions of the Gross-Pitaevsky functional for the wave function of such a condensate. In most situations, the vortex filament energy functional is either unbounded below or has only trivial minimizers, but we establish the existence of large numbers of nontrivial local minimizers and we prove that, given any such local minimizer, the Gross-Pitaevsky functional has a local minimizer that is nearby (in a suitable sense) whenever a scaling parameter is sufficiently small.
Mots clés : Gross-Pitaevsky, vortices, gamma-convergence, Thomas-Fermi limit, rectifiable currents
@article{COCV_2007__13_1_35_0, author = {Jerrard, Robert L.}, title = {Local minimizers with vortex filaments for a {Gross-Pitaevsky} functional}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {35--71}, publisher = {EDP-Sciences}, volume = {13}, number = {1}, year = {2007}, doi = {10.1051/cocv:2007004}, mrnumber = {2282101}, zbl = {1111.35077}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007004/} }
TY - JOUR AU - Jerrard, Robert L. TI - Local minimizers with vortex filaments for a Gross-Pitaevsky functional JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 35 EP - 71 VL - 13 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007004/ DO - 10.1051/cocv:2007004 LA - en ID - COCV_2007__13_1_35_0 ER -
%0 Journal Article %A Jerrard, Robert L. %T Local minimizers with vortex filaments for a Gross-Pitaevsky functional %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 35-71 %V 13 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007004/ %R 10.1051/cocv:2007004 %G en %F COCV_2007__13_1_35_0
Jerrard, Robert L. Local minimizers with vortex filaments for a Gross-Pitaevsky functional. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 1, pp. 35-71. doi : 10.1051/cocv:2007004. http://www.numdam.org/articles/10.1051/cocv:2007004/
[1] On the shape of vortices for a rotating Bose-Einstein condensate. Phys. Rev. A 66 (2002) 023611.
and ,[2] Properties of a single vortex solution in a rotating Bose-Einstein condensate. C. R. Acad. Sci. Paris Ser. I 336 (2003) 713-718. | Zbl
and ,[3] Vortex energy and vortex bending for a rotating Bose-Einstein condensate. Phys. Rev. A 64 (2001) 043611.
and ,[4] Functions with prescribed singularities. J. Eur. Math. Soc. 5 (2003) 275-311. | Zbl
, and ,[5] Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math J. 54 (2005) 1411-1472.
, and ,[6] Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. I, II. Arch. Rational Mech. Anal. 142 (1998) 45-73, 75-98. | Zbl
and ,[7] Ginzburg-Landau Vortices. Birkhauser, New-York (1994). | MR | Zbl
, and ,[8] Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649-705. | Zbl
, , and ,[9] Measure Theory and Fine Properties of Functions. CRC Press, London (1992). | MR | Zbl
and ,[10] Geometric Measure Theory. Springer-Verlag, Berlin (1969). | MR | Zbl
,[11] Cartesian Currents in the Calculus of Variations. I, II. Springer-Verlag, New York (1998). | MR | Zbl
, and ,[12] The Jacobian and the Ginzburg-Landau functional. Cal. Var. 14 (2002) 151-191. | Zbl
and ,[13] Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions. Comm. Math. Phys. 249 (2004) 549-577. | Zbl
, , and ,[14] Local minimizers and singular perturbations. Proc. Royal Soc. Edin. 111A (1989) 69-84. | Zbl
and ,[15] Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1-26. | Zbl
and ,[16] Local minimizers with vortices to the Ginzburg-Landau system in 3-d. Comm. Pure Appl. Math 57 (2004) 99-125. | Zbl
, , and ,[17] Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 87 (2001) 210402.
, , , and ,[18] Line vortices in the -Higgs model. Cont. Opt. Calc. Var. 1 (1996) 77-167. | Numdam | Zbl
,[19] Dynamics of a single vortex line in a Bose-Einstein condensate. Phys. Rev. Lett. 89 (2002) 200403.
, , and ,[20] A product estimate for Ginzburg-Landau and corollaries. J. Funct. Anal. 211 (2004) 219-244. | Zbl
and .Cité par Sources :