Graph selectors and viscosity solutions on lagrangian manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 795-815.

Let Λ be a lagrangian submanifold of T * X for some closed manifold X. Let S(x,ξ) be a generating function for Λ which is quadratic at infinity, and let W(x) be the corresponding graph selector for Λ, in the sense of Chaperon-Sikorav-Viterbo, so that there exists a subset X 0 X of measure zero such that W is Lipschitz continuous on X, smooth on XX 0 and (x,W/x(x))Λ for XX 0 . Let H(x,p)=0 for (x,p)Λ. Then W is a classical solution to H(x,W/x(x))=0 on XX 0 and extends to a Lipschitz function on the whole of X. Viterbo refers to W as a variational solution. We prove that W is also a viscosity solution under some simple and natural conditions. We also prove that these conditions are satisfied in many cases, including certain commonly occuring cases where H(x,p) is not convex in p.

DOI : 10.1051/cocv:2006023
Classification : 49L25, 53D12
Mots clés : viscosity solution, lagrangian manifold, graph selector
@article{COCV_2006__12_4_795_0,
     author = {McCaffrey, David},
     title = {Graph selectors and viscosity solutions on lagrangian manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {795--815},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {4},
     year = {2006},
     doi = {10.1051/cocv:2006023},
     mrnumber = {2266819},
     zbl = {1114.49030},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2006023/}
}
TY  - JOUR
AU  - McCaffrey, David
TI  - Graph selectors and viscosity solutions on lagrangian manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 795
EP  - 815
VL  - 12
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2006023/
DO  - 10.1051/cocv:2006023
LA  - en
ID  - COCV_2006__12_4_795_0
ER  - 
%0 Journal Article
%A McCaffrey, David
%T Graph selectors and viscosity solutions on lagrangian manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 795-815
%V 12
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2006023/
%R 10.1051/cocv:2006023
%G en
%F COCV_2006__12_4_795_0
McCaffrey, David. Graph selectors and viscosity solutions on lagrangian manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 795-815. doi : 10.1051/cocv:2006023. http://www.numdam.org/articles/10.1051/cocv:2006023/

[1] M. Bardi and L.C. Evans, On Hopf's formula for solutions of Hamilton-Jacobi equations. Nonlinear Anal. Th. Meth. Appl. 8 (1984) 1373-1381. | Zbl

[2] F. Cardin, On viscosity solutions and geometrical solutions of Hamilton-Jacobi equations. Nonlinear Anal. Th. Meth. Appl. 20 (1993) 713-719. | Zbl

[3] M. Chaperon, Lois de conservation et geometrie symplectique. C.R. Acad. Sci. Paris Ser. I Math., 312 (1991) 345-348. | Zbl

[4] F.H. Clarke, Optimization and Nonsmooth Analysis. J. Wiley, New York (1983). | MR | Zbl

[5] M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. AMS 277 (1983) 1-42. | Zbl

[6] M.G. Crandall, L.C. Evans and P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. AMS 282 (1984) 487-502. | Zbl

[7] M.V. Day, On Lagrange manifolds and viscosity solutions. J. Math. Syst. Estim. Contr. 8 (1998) http://www.math.vt.edu/people/day/research/LMVS.pdf | MR | Zbl

[8] S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, Quantization of the Bellman equation, exponential asymptotics and tunneling, in Advances in Soviet Mathematics, V.P. Maslov and S.N. Samborskii, Eds., American Mathematical Society, Providence, Rhode Island 13 (1992) 1-46 . | Zbl

[9] W.H Fleming and H.M. Soner, Controlled markov processes and viscosity solutions. Springer-Verlag, New York (1993). | MR | Zbl

[10] H. Frankowska, Hamilton-Jacobi equations: viscosity solutions and generalised gradients. J. Math. Anal. Appl. 141 (1989) 21-26. | Zbl

[11] E. Hopf, Generalized solutions of non-linear equations of first order. J. Math. Mech. 14 (1965) 951-973. | Zbl

[12] T. Joukovskaia, Thèse de Doctorat, Université de Paris VII, Denis Diderot (1993).

[13] F. Laudenbach and J.C. Sikorav, Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibre cotangent. Invent. Math. 82 (1985) 349-357. | Zbl

[14] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences Series 74, Springer-Verlag, Berlin (1989). | MR | Zbl

[15] D. Mccaffrey and S.P. Banks, Lagrangian Manifolds, Viscosity Solutions and Maslov Index. J. Convex Anal. 9 (2002) 185-224. | Zbl

[16] D. Mccaffrey, Viscosity Solutions on Lagrangian Manifolds and Connections with Tunnelling Operators, in Idempotent Mathematics and Mathematical Physics, V.P. Maslov and G.L. Litvinov Eds., Contemp. Math. 377, American Mathematical Society, Providence, Rhode Island (2005). | MR | Zbl

[17] D. Mccaffrey, Geometric existence theory for the control-affine H problem, to appear in J. Math. Anal & Appl. (August 2005). | MR | Zbl

[18] G.P. Paternain, L. Polterovich and K.F. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections and Aubry-Mather theory. Moscow Math. J. 3 (2003) 593-619. | Zbl

[19] J.C. Sikorav, Sur les immersions lagrangiennes dans un fibre cotangent admettant une phase generatrice globale. C. R. Acad. Sci. Paris, Ser. I Math. 302 (1986) 119-122. | Zbl

[20] P. Soravia, H control of nonlinear systems: differential games and viscosity solutions. SIAM J. Contr. Opt. 34 (1996) 1071-1097. | Zbl

[21] A.J. Van Der Schaft, On a state space approach to nonlinear H control. Syst. Contr. Lett. 16 (1991) 1-8. | Zbl

[22] A.J. Van Der Schaft, L 2 gain analysis of nonlinear systems and nonlinear state feedback H control. IEEE Trans. Automatic Control AC-37 (1992) 770-784. | Zbl

[23] C. Viterbo, Symplectic topology as the geometry of generating functions. Math. Ann. 292 (1992) 685-710. | Zbl

[24] C. Viterbo, Solutions d'equations d'Hamilton-Jacobi et geometrie symplectique, Addendum to: Séminaire sur les équations aux Dérivés Partielles 1994-1995, École Polytech., Palaiseau (1996). | Numdam | Zbl

[25] A. Ottolengi and C. Viterbo, Solutions généralisées pour l'équation de Hamilton-Jacobi dans le cas d'évolution, unpublished.

[26] A. Weinstein, Lectures on symplectic manifolds, Regional Conference Series in Mathematics 29, Conference Board of the Mathematical Sciences, AMS, Providence, Rhode Island (1977). | MR | Zbl

Cité par Sources :