We consider the problem of placing a Dirichlet region made by small balls of given radius in a given domain subject to a force in order to minimize the compliance of the configuration. Then we let tend to infinity and look for the limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.
Mots clés : compliance, optimal location, shape optimization, $\Gamma -$convergence
@article{COCV_2006__12_4_752_0, author = {Buttazzo, Giuseppe and Santambrogio, Filippo and Varchon, Nicolas}, title = {Asymptotics of an optimal compliance-location problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {752--769}, publisher = {EDP-Sciences}, volume = {12}, number = {4}, year = {2006}, doi = {10.1051/cocv:2006020}, mrnumber = {2266816}, zbl = {1114.49016}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2006020/} }
TY - JOUR AU - Buttazzo, Giuseppe AU - Santambrogio, Filippo AU - Varchon, Nicolas TI - Asymptotics of an optimal compliance-location problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 752 EP - 769 VL - 12 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2006020/ DO - 10.1051/cocv:2006020 LA - en ID - COCV_2006__12_4_752_0 ER -
%0 Journal Article %A Buttazzo, Giuseppe %A Santambrogio, Filippo %A Varchon, Nicolas %T Asymptotics of an optimal compliance-location problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 752-769 %V 12 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2006020/ %R 10.1051/cocv:2006020 %G en %F COCV_2006__12_4_752_0
Buttazzo, Giuseppe; Santambrogio, Filippo; Varchon, Nicolas. Asymptotics of an optimal compliance-location problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 752-769. doi : 10.1051/cocv:2006020. http://www.numdam.org/articles/10.1051/cocv:2006020/
[1] Shape optimization by the homogenization method. Springer-Verlag, New York (2002). | MR | Zbl
,[2] Topology Optimization. Theory, Methods, and Applications. Springer-Verlag, New York (2003). | MR | Zbl
and ,[3] Integral representation of nonconvex functionals defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 101-117. | EuDML | Numdam | Zbl
and ,[4] Asymptotique d'un problème de positionnement optimal. C.R. Acad. Sci. Paris Ser. I 335 (2002) 1-6. | Zbl
, and ,[5] Variational Methods in Shape Optimization Problems. Birkäuser, Boston, Progress in Nonlinear Differential Equations and their Applications 65 (2005). | MR | Zbl
and ,[6] Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions. Bull. Amer. Math. Soc. 23 (1990) 531-535. | Zbl
and ,[7] Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. | Zbl
and ,[8] An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993) 183-195. | Zbl
and ,[9] On the relaxed formulation of Some Shape Optimization Problems. Adv. Math. Sci. Appl. 7 (1997) 1-24. | Zbl
, , and ,[10] Un terme étrange venu d'ailleurs. Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. II (1982), 98-138 and Vol. III (1982) 154-178. | Zbl
and ,[11] An Introduction to convergence. Birkhauser, Basel (1992). | MR | Zbl
,[12] Lagerungen in der Ebene auf der Kugel und im Raum, Die Grundlehren der Math. Wiss., Vol. 65, Springer-Verlag, Berlin (1953). | MR | Zbl
,[13] Variation et Optimisation de Forme. Une analyse géométrique. Springer-Verlag, Berlin, Mathématiques et Applications 48 (2005). | Zbl
and ,[14] Hexagonal Economic Regions Solve the Location Problem. Amer. Math. Monthly 109 (2002) 165-172. | Zbl
and ,[15] Convergence for the Irrigation Problem, 2003. J. Conv. Anal. 12 (2005) 145-158. | Zbl
and ,[16] Introduction to Shape Optimization. Shape sensitivity analysis. Springer-Verlag, Berlin (1992). | MR | Zbl
and ,Cité par Sources :