In this paper we analyze a typical shape optimization problem in two-dimensional conductivity. We study relaxation for this problem itself. We also analyze the question of the approximation of this problem by the two-phase optimal design problems obtained when we fill out the holes that we want to design in the original problem by a very poor conductor, that we make to converge to zero.
Mots-clés : optimal shape design, relaxation, variational approach, $\Gamma $-convergence, semiconvex envelopes, quasiconvexity
@article{COCV_2006__12_4_699_0, author = {Bellido, Jos\'e Carlos}, title = {On an optimal shape design problem in conduction}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {699--720}, publisher = {EDP-Sciences}, volume = {12}, number = {4}, year = {2006}, doi = {10.1051/cocv:2006018}, mrnumber = {2266814}, zbl = {1111.49028}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2006018/} }
TY - JOUR AU - Bellido, José Carlos TI - On an optimal shape design problem in conduction JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 699 EP - 720 VL - 12 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2006018/ DO - 10.1051/cocv:2006018 LA - en ID - COCV_2006__12_4_699_0 ER -
%0 Journal Article %A Bellido, José Carlos %T On an optimal shape design problem in conduction %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 699-720 %V 12 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2006018/ %R 10.1051/cocv:2006018 %G en %F COCV_2006__12_4_699_0
Bellido, José Carlos. On an optimal shape design problem in conduction. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 699-720. doi : 10.1051/cocv:2006018. http://www.numdam.org/articles/10.1051/cocv:2006018/
[1] Shape optimization by the homogenization method. Springer (2002). | MR | Zbl
,[2] Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27-68. | Zbl
, , and ,[3] Optimal bounds on the effective behauvior of a mixture of two well-odered elastic materials. Quat. Appl. Math. 51 (1993) 643-674. | Zbl
and ,[4] Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Europ. J. Mech. A/solids 12 (1993) 839-878. | Zbl
and ,[5] Homogenization of the Neumann problem with nonisolated holes. Asymptotic Anal. 7 (1993) 81-95. With an appendix written jointly with A.K. Nandakumar. | Zbl
and ,[6] Explicit computation of the relaxed density coming from a three-dimensional optimal design prroblem. Nonlinear Analysis TMA 52 (2003) 1709-1726. | Zbl
,[7] Optimal design via variational principles: the one-dimensional case. J. Math. Pures Appl. 80 (2000) 245-261. | Zbl
and ,[8] Explicit quasiconvexification for some cost functionals depending on the derivatives of the state in optimal design. DCDS-A 8 (2002) 967-982. | Zbl
and ,[9] Optimal control via variational principles: the three dimensional case. J. Math. Anal. Appl. 287 (2003) 157-176. | Zbl
and ,[10] Existence in optimal control with state equation in divergence form via variational principles. J. Convex Anal. 10 (2003) 365-378. | Zbl
and ,[11] Topology optimization, Theory, methods and applications. Springer-Verlag, Berlin (2003). | MR | Zbl
and ,[12] -convergence for beginners, Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 22 (2002). | MR
,[13] Homogenization in some weakly connected domains. Ricerche Mat. 47 (1998) 51-94. | Zbl
,[14] Homogenization in general periodically perforated domains by a spectral approach. Calc. Var. Partial Differ. Equat. 15 (2002) 1-24. | Zbl
,[15] Variational methods for structural optimization. Springer (2000). | MR | Zbl
,[16] Introduction to -convergence. Birkhäuser, Boston, 1993. | MR | Zbl
,[17] Energy functionals depending on elastic strain and chemical composition. Cal. Var. 2 (1994) 283-313. | Zbl
, and ,[18] Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1985). | MR | Zbl
and ,[19] Convex integration for lipschitz mappings and counterexamples for regularity. Technical Report 26, Max-Planck Institute for Mathematics in the Sciences, Leipzig (1999).
and ,[20] Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat Pura Appl. 112 (1977) 49-68. | Zbl
,[21] Parametrized Measures and Variational Principles. Progress in Nonlinear Partial Differential Equations. Birkhäuser (1997). | MR | Zbl
,[22] Optimal design and constrained quasiconvexity. SIAM J. Math. Anal. 32 (2000) 854-869. | Zbl
,[23] Constrained quasiconvexification of the square of the gradient of the state in optimal design. Quater. Appl. Math. 62 (2004) 459-470. | Zbl
,[24] Remarks on optimal design problems, in Homogenization and continuum mechanics, G. Buttazzo, G. Bouchitte, and P. Suchet Eds, Singapure World Scientific (1994) 279-296. | Zbl
,[25] An introduction to homogenization method in optimal design. Lect. Notes Math. Springer (2000). | MR | Zbl
,[26] Lower semicontinuity of variational integrals and compesated compactness, in Proc. ICM, S.D. Chatterji Ed., Birkhäuser 2 (1994) 1153-1158. | Zbl
,Cité par Sources :