The geometrical quantity in damped wave equations on a square
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 636-661.

The energy in a square membrane Ω subject to constant viscous damping on a subset ωΩ decays exponentially in time as soon as ω satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate τ(ω) of this decay satisfies τ(ω)=2min(-μ(ω),g(ω)) (see Lebeau [Math. Phys. Stud. 19 (1996) 73-109]). Here μ(ω) denotes the spectral abscissa of the damped wave equation operator and g(ω) is a number called the geometrical quantity of ω and defined as follows. A ray in Ω is the trajectory generated by the free motion of a mass-point in Ω subject to elastic reflections on the boundary. These reflections obey the law of geometrical optics. The geometrical quantity g(ω) is then defined as the upper limit (large time asymptotics) of the average trajectory length. We give here an algorithm to compute explicitly g(ω) when ω is a finite union of squares.

DOI : 10.1051/cocv:2006015
Classification : 35L05, 93D15
Mots clés : damped wave equation, mathematical billards
@article{COCV_2006__12_4_636_0,
     author = {H\'ebrard, Pascal and Humbert, Emmanuel},
     title = {The geometrical quantity in damped wave equations on a square},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {636--661},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {4},
     year = {2006},
     doi = {10.1051/cocv:2006015},
     mrnumber = {2266812},
     zbl = {1108.35105},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2006015/}
}
TY  - JOUR
AU  - Hébrard, Pascal
AU  - Humbert, Emmanuel
TI  - The geometrical quantity in damped wave equations on a square
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 636
EP  - 661
VL  - 12
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2006015/
DO  - 10.1051/cocv:2006015
LA  - en
ID  - COCV_2006__12_4_636_0
ER  - 
%0 Journal Article
%A Hébrard, Pascal
%A Humbert, Emmanuel
%T The geometrical quantity in damped wave equations on a square
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 636-661
%V 12
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2006015/
%R 10.1051/cocv:2006015
%G en
%F COCV_2006__12_4_636_0
Hébrard, Pascal; Humbert, Emmanuel. The geometrical quantity in damped wave equations on a square. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 636-661. doi : 10.1051/cocv:2006015. http://www.numdam.org/articles/10.1051/cocv:2006015/

[1] M. Asch and G. Lebeau, The spectrum of the damped wave operator for a bounded domain in 2 . Experiment. Math. 12 (2003) 227-241. | Zbl

[2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | Zbl

[3] A. Benaddi and B. Rao, Energy decay rate of wave equations with infinite damping. J. Diff. Equ. 161 (2000) 337-357. | Zbl

[4] C. Carlos and S. Cox, Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39 (2001) 1748-1755. | Zbl

[5] A. Chambert-Loir, S. Fermigier and V. Maillot, Exercices de mathématiques pour l'agrégation. Analyse I. Masson (1995). | Zbl

[6] S. Cox and E. Zuazua, The rate at which energy decays in a damping string. Comm. Partial Diff. Equ. 19 (1994) 213-243. | Zbl

[7] P. Hébrard, Étude de la géométrie optimale des zones de contrôle dans des problèmes de stabilisation. Ph.D. Thesis, University of Nancy 1 (2002).

[8] P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48 (2003) 119-209. | Zbl

[9] G. Lebeau, Équation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics. Kluwer Acad. Publ., Math. Phys. Stud. 19 (1996) 73-109. | Zbl

[10] J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math. 28 (1975) 501-523. | Zbl

[11] J. Sjostrand, Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Sci. 36 (2000) 573-611. | Zbl

[12] S. Tabachnikov, Billiards mathématiques. SMF collection Panoramas et synthèses (1995). | MR | Zbl

[13] E. Zuazua, Exponential decay for the semilinear wave equation with localized damping. Comm. Partial Equ. 15 (1990) 205-235. | Zbl

Cité par Sources :