The energy in a square membrane subject to constant viscous damping on a subset decays exponentially in time as soon as satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate of this decay satisfies (see Lebeau [Math. Phys. Stud. 19 (1996) 73-109]). Here denotes the spectral abscissa of the damped wave equation operator and is a number called the geometrical quantity of and defined as follows. A ray in is the trajectory generated by the free motion of a mass-point in subject to elastic reflections on the boundary. These reflections obey the law of geometrical optics. The geometrical quantity is then defined as the upper limit (large time asymptotics) of the average trajectory length. We give here an algorithm to compute explicitly when is a finite union of squares.
Mots-clés : damped wave equation, mathematical billards
@article{COCV_2006__12_4_636_0, author = {H\'ebrard, Pascal and Humbert, Emmanuel}, title = {The geometrical quantity in damped wave equations on a square}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {636--661}, publisher = {EDP-Sciences}, volume = {12}, number = {4}, year = {2006}, doi = {10.1051/cocv:2006015}, mrnumber = {2266812}, zbl = {1108.35105}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2006015/} }
TY - JOUR AU - Hébrard, Pascal AU - Humbert, Emmanuel TI - The geometrical quantity in damped wave equations on a square JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 636 EP - 661 VL - 12 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2006015/ DO - 10.1051/cocv:2006015 LA - en ID - COCV_2006__12_4_636_0 ER -
%0 Journal Article %A Hébrard, Pascal %A Humbert, Emmanuel %T The geometrical quantity in damped wave equations on a square %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 636-661 %V 12 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2006015/ %R 10.1051/cocv:2006015 %G en %F COCV_2006__12_4_636_0
Hébrard, Pascal; Humbert, Emmanuel. The geometrical quantity in damped wave equations on a square. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 636-661. doi : 10.1051/cocv:2006015. http://www.numdam.org/articles/10.1051/cocv:2006015/
[1] The spectrum of the damped wave operator for a bounded domain in . Experiment. Math. 12 (2003) 227-241. | Zbl
and ,[2] Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | Zbl
, and ,[3] Energy decay rate of wave equations with infinite damping. J. Diff. Equ. 161 (2000) 337-357. | Zbl
and ,[4] Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39 (2001) 1748-1755. | Zbl
and ,[5] Exercices de mathématiques pour l'agrégation. Analyse I. Masson (1995). | Zbl
, and ,[6] The rate at which energy decays in a damping string. Comm. Partial Diff. Equ. 19 (1994) 213-243. | Zbl
and ,[7] Étude de la géométrie optimale des zones de contrôle dans des problèmes de stabilisation. Ph.D. Thesis, University of Nancy 1 (2002).
,[8] Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48 (2003) 119-209. | Zbl
and ,[9] Équation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics. Kluwer Acad. Publ., Math. Phys. Stud. 19 (1996) 73-109. | Zbl
,[10] Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math. 28 (1975) 501-523. | Zbl
and ,[11] Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Sci. 36 (2000) 573-611. | Zbl
,[12] Billiards mathématiques. SMF collection Panoramas et synthèses (1995). | MR | Zbl
,[13] Exponential decay for the semilinear wave equation with localized damping. Comm. Partial Equ. 15 (1990) 205-235. | Zbl
,Cité par Sources :