We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.
Mots-clés : minimal time function, Hamilton-Jacobi equations, viscosity solutions, minimal trajectories, eikonal equations, monotonicity of trajectories, proximal analysis, nonsmooth analysis
@article{COCV_2006__12_1_120_0, author = {Nour, Chadi}, title = {Semigeodesics and the minimal time function}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {120--138}, publisher = {EDP-Sciences}, volume = {12}, number = {1}, year = {2006}, doi = {10.1051/cocv:2005032}, mrnumber = {2192071}, zbl = {1114.49028}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2005032/} }
TY - JOUR AU - Nour, Chadi TI - Semigeodesics and the minimal time function JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 120 EP - 138 VL - 12 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2005032/ DO - 10.1051/cocv:2005032 LA - en ID - COCV_2006__12_1_120_0 ER -
Nour, Chadi. Semigeodesics and the minimal time function. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 1, pp. 120-138. doi : 10.1051/cocv:2005032. http://www.numdam.org/articles/10.1051/cocv:2005032/
[1] Uniqueness of lower semicontinuous viscosity solutions for the minimum time problem. SIAM J. Control Optim. 38 (2000) 470-481. | MR | Zbl
, and ,[2] Differential inclusions. Springer-Verlag, New York (1984). | MR | Zbl
and ,[3] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. With appendices by Maurizio Falcone and Pierpaolo Soravia. Birkhäuser Boston, Inc., Boston, MA (1997). | MR | Zbl
and ,[4] Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equations 15 (1990) 1713-1742. | MR | Zbl
and ,[5] Convexity properties of the minimum time function. Calc. Var. 3 (1995) 273-298. | MR | Zbl
and ,[6] Semiconcave functions, Hamilton-Jacobi equations and optimal control problems. Birkhäuser Boston (2004). | MR | Zbl
and ,[7] Optimal times for constrained nonlinear control problems without local controllability. Appl. Math. Optim. 36 (1997) 21-42. | MR | Zbl
, and ,[8] Mean value inequalities in Hilbert space. Trans. Amer. Math. Soc. 344 (1994) 307-324. | MR | Zbl
and ,[9] Qualitative properties of trajectories of control systems: A survey. J. Dynam. Control Syst. 1 (1995) 1-48. | MR | Zbl
, , and ,[10] Nonsmooth Analysis and Control Theory. Graduate Texts Math. 178 (1998). Springer-Verlag, New York. | MR | Zbl
, , and ,[11] The Hamilton-Jacobi equation of minimal time control. J. Convex Anal. 11 (2004) 413-436. | MR | Zbl
and ,[12] User's guide to the viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, and ,[13] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | MR | Zbl
and ,[14] Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1993). | MR | Zbl
and ,[15] Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 (1993) 257-272. | MR | Zbl
,[16] The Hamilton-Jacobi equation in optimal control: duality and geodesics. Ph.D. Thesis, Université Claude Bernard Lyon I (2003).
,[17] The bilateral minimal time function. J. Convex Anal., to appear. | MR | Zbl
,[18] Discontinuous viscosity solutions to Dirichlet problems for Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Differ. Equ. 18 (1993) 1493-1514. | MR | Zbl
,[19] A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158-133. | MR | Zbl
,[20] Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl. 94 (1997) 335-363. | MR | Zbl
,[21] Optimal control. Birkhäuser Boston, Inc., Boston, MA (2000). | MR | Zbl
,[22] Proximal analysis and the minimal time function. SIAM J. Control Optim. 36 (1998) 1048-1072. | MR | Zbl
and ,Cité par Sources :