We consider a linear coupled system of quasi-electrostatic equations which govern the evolution of a 3-D layered piezoelectric body. Assuming that a dissipative effect is effective at the boundary, we study the uniform stabilization problem. We prove that this is indeed the case, provided some geometric conditions on the region and the interfaces hold. We also assume a monotonicity condition on the coefficients. As an application, we deduce exact controllability of the system with boundary control via a classical result due to Russell.
Mots-clés : distributed systems, boundary control, stabilization, exact controllability
@article{COCV_2006__12_2_198_0, author = {Kapitonov, Boris and Miara, Bernadette and Menzala, Gustavo Perla}, title = {Stabilization of a layered piezoelectric {3-D} body by boundary dissipation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {198--215}, publisher = {EDP-Sciences}, volume = {12}, number = {2}, year = {2006}, doi = {10.1051/cocv:2005028}, mrnumber = {2209350}, zbl = {1105.93047}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2005028/} }
TY - JOUR AU - Kapitonov, Boris AU - Miara, Bernadette AU - Menzala, Gustavo Perla TI - Stabilization of a layered piezoelectric 3-D body by boundary dissipation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 198 EP - 215 VL - 12 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2005028/ DO - 10.1051/cocv:2005028 LA - en ID - COCV_2006__12_2_198_0 ER -
%0 Journal Article %A Kapitonov, Boris %A Miara, Bernadette %A Menzala, Gustavo Perla %T Stabilization of a layered piezoelectric 3-D body by boundary dissipation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 198-215 %V 12 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2005028/ %R 10.1051/cocv:2005028 %G en %F COCV_2006__12_2_198_0
Kapitonov, Boris; Miara, Bernadette; Menzala, Gustavo Perla. Stabilization of a layered piezoelectric 3-D body by boundary dissipation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 2, pp. 198-215. doi : 10.1051/cocv:2005028. http://www.numdam.org/articles/10.1051/cocv:2005028/
[1] Well-posedness of initial-boundary value problems for piezoelectric equations. Appl. Anal. 81 (2002) 129-141. | Zbl
and ,[2] Sharp sufficient conditions for the observation control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | Zbl
, and ,[3] Mesures de défaut de compacité, application au système de Lamé. Annals Scientifiques de l'École Normale Supérieure (4) 34 (2001) 817-870. | Numdam | Zbl
and ,[4] Stabilisation haute frequence d'équations aux dérivées partialles linéaires. Thèse de Doctorat, Université Paris XI-Orsay (2004).
,[5] Electrodynamics of continua. Vols. 1, 2, Berlin, Springer (1990).
and ,[6] Fundamentals of Piezoelectricity. Oxford University Press (1996).
,[7] Energy decay and a transmission problem in electromagneto-elasticity. Adv. Diff. Equations 7 (2002) 819-846. | Zbl
and ,[8] Boundary observation and exact control of a quasi-electrostatic piezoelectric system in multilayered media. (submitted). | Zbl
, and ,[9] Exact controllability and stabilization, the multiplier method. Masson (1994). | MR | Zbl
,[10] Boundary controllability in problems of transmission for a class of second order hyperbolic systems. ESAIM: COCV 2 (1997) 343-357. | Numdam | Zbl
,[11] Decay rates for the three-dimensional linear system of thermoelasticity. Archive for Rational Mechanics and Analysis 148 (1999) 179-231. | Zbl
and ,[12] Exact controllability, stabilization and perturbation for distributed systems. SIAM Rev. 30 (1988) 1-68. | Zbl
,[13] Controlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson, Paris (1988). | Zbl
,[14] Controlabilité d'un corp piézoélectrique. CRAS Paris 333 (2001) 267-270. | Zbl
,[15] On the applicability of Lyapunov's theorem in Hilbert space. SIAM J. Math. Anal. 3 (1972) 291-294. | Zbl
,[16] Semigroup of linear operators and applications to Partial Differential Equations. Springer-Verlag (1983). | MR | Zbl
,[17] The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region. SIAM J. Control Optim. 24 (1986) 199-229. | Zbl
,Cité par Sources :