The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional and a numerical application is presented.
Mots-clés : shape optimization, topological asymptotic, Navier-Stokes equations
@article{COCV_2005__11_3_401_0, author = {Amstutz, Samuel}, title = {The topological asymptotic for the {Navier-Stokes} equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {401--425}, publisher = {EDP-Sciences}, volume = {11}, number = {3}, year = {2005}, doi = {10.1051/cocv:2005012}, mrnumber = {2148851}, zbl = {1123.35040}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2005012/} }
TY - JOUR AU - Amstutz, Samuel TI - The topological asymptotic for the Navier-Stokes equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 401 EP - 425 VL - 11 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2005012/ DO - 10.1051/cocv:2005012 LA - en ID - COCV_2005__11_3_401_0 ER -
%0 Journal Article %A Amstutz, Samuel %T The topological asymptotic for the Navier-Stokes equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 401-425 %V 11 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2005012/ %R 10.1051/cocv:2005012 %G en %F COCV_2005__11_3_401_0
Amstutz, Samuel. The topological asymptotic for the Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 3, pp. 401-425. doi : 10.1051/cocv:2005012. http://www.numdam.org/articles/10.1051/cocv:2005012/
[1] Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Rational Mech. Anal. 113 (1990) 209-259. | Zbl
,[2] Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal. 113 (1990) 261-298. | Zbl
,[3] Shape optimization by the homogenization method. Springer, Appl. Math. Sci. 146 (2002). | MR | Zbl
,[4] The topological asymptotic for the Helmholtz equation: insertion of a hole, a crack and a dielectric object. Rapport MIP No. 03-05 (2003).
,[5] Optimal topology design of continuum structure: an introduction. Technical report, Departement of mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark (1996).
,[6] Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, collection CEA 6 (1987). | MR | Zbl
and ,[7] Identification of small inhomogeneities of extreme conductivity byboundary measurements: a theorem of continuous dependence. Arch. Rational Mech. Anal. 105 (1989) 299-326. | Zbl
and ,[8] An introduction to the mathematical theory of the Navier-Stokes equations. Vols. I and II, Springer-Verlag 39 (1994). | MR | Zbl
,[9] The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756-1778. | Zbl
, and ,[10] The topological asymptotic expansion for the Dirichlet problem. SIAM J. Control. Optim. 41 (2002) 1052-1072. | Zbl
and ,[11] Topological sensitivity and shape optimization for the Stokes equations. Rapport MIP No. 01-24 (2001). | Zbl
and ,[12] The topological asymptotic expansion for the quasi-Stokes problem. ESAIM: COCV 10 (2004) 478-504. | Numdam | Zbl
and ,[13] Matching of asymptotic expansions of solutions of boundary value problems. Translations Math. Monographs 102 (1992). | Zbl
,[14] Generalized shape optimization of three-dimensionnal structures using materials with optimum microstructures. Technical report, Institute of Mechanical Engineering, Aalborg University, DK-9920 Aalborg, Denmark (1996).
, and ,[15] The Toplogical Asymptotic, Computational Methods for Control Applications, R. Glowinski, H. Kawarada and J. Periaux Eds. GAKUTO Internat. Ser. Math. Sci. Appl. 16 (2001) 53-72. | Zbl
,[16] Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Birkhäuser Verlag, Oper. Theory Adv. Appl. 101 (2000). | Zbl
, and ,[17] Steady flows of Jeffrey-Hamel type from the half plane into an infinite channel. Linearization on an antisymmetric solution. J. Math. Pures Appl. 80 (2001) 1069-1098. | Zbl
, and ,[18] Steady flows of Jeffrey-Hamel type from the half plane into an infinite channel. Linearization on a symmetric solution. J. Math. Pures Appl. 81 (2001) 781-810. | Zbl
, and ,[19] Approximation of exterior boundary value problems for the Stokes system. Asymptotic Anal. 14 (1997) 223-255. | Zbl
and ,[20] Nonlinear artificial boundary conditions for the Navier-Stokes equations in an aperture domain. Math. Nachr. 265 (2004) 24-67. | Zbl
, and ,[21] The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim. 42 (2003) 1523-1544. | Zbl
, and ,[22] The topological asymptotic for the Helmholtz equation with Dirichlet condition on the boundary of an arbitrary shaped hole. SIAM J. Control Optim. 43 (2004) 899-921. | Zbl
and ,[23] Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien. Thesis, Universität-Gesamthochschule-Siegen (1995).
,[24] Sensibilité topologique en optimisation de forme. Thèse de l'INSA Toulouse (2001).
,[25] On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1241-1272. | Zbl
and ,[26] Navier-Stokes equations. Elsevier (1984). | MR
,Cité par Sources :