We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement constraint set defined by the obstacle and the differentiability of the two forms associated to the variational inequality.
Mots-clés : adaptive elasticity, functional spaces, polyhedric set, rod
@article{COCV_2005__11_3_382_0, author = {Figueiredo, Isabel N. and Leal, Carlos F. and Pinto, Cec{\'\i}lia S.}, title = {Conical differentiability for bone remodeling contact rod models}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {382--400}, publisher = {EDP-Sciences}, volume = {11}, number = {3}, year = {2005}, doi = {10.1051/cocv:2005011}, mrnumber = {2148850}, zbl = {1085.49005}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2005011/} }
TY - JOUR AU - Figueiredo, Isabel N. AU - Leal, Carlos F. AU - Pinto, Cecília S. TI - Conical differentiability for bone remodeling contact rod models JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 382 EP - 400 VL - 11 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2005011/ DO - 10.1051/cocv:2005011 LA - en ID - COCV_2005__11_3_382_0 ER -
%0 Journal Article %A Figueiredo, Isabel N. %A Leal, Carlos F. %A Pinto, Cecília S. %T Conical differentiability for bone remodeling contact rod models %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 382-400 %V 11 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2005011/ %R 10.1051/cocv:2005011 %G en %F COCV_2005__11_3_382_0
Figueiredo, Isabel N.; Leal, Carlos F.; Pinto, Cecília S. Conical differentiability for bone remodeling contact rod models. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 3, pp. 382-400. doi : 10.1051/cocv:2005011. http://www.numdam.org/articles/10.1051/cocv:2005011/
[1] Mathematical Elasticity, Vol. 1: Three-Dimensional Elasticity. Stud. Math. Appl., North-Holland, Amsterdam 20 (1988). | MR | Zbl
,[2] Bone remodeling I: theory of adaptive elasticity. J. Elasticity 6 (1976) 313-326. | Zbl
and ,[3] Bone remodeling III: uniqueness and stability in adaptive elasticity theory. J. Elasticity 8 (1978) 285-295. | Zbl
and ,[4] Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (1998). | MR | Zbl
,[5] Asymptotic model of a nonlinear adaptive elastic rod. Math. Mech. Solids 9 (2004) 331-354. | Zbl
and ,[6] How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977) 615-631. | Zbl
,[7] Bone remodeling II: small strain adaptive elasticity. J. Elasticity 6 (1976) 337-352. | Zbl
and ,[8] Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976) 130-185. | Zbl
,[9] An existence and uniqueness result in bone remodeling theory. Comput. Methods Appl. Mech. Engrg. 151 (1998) 539-544. | Zbl
and ,[10] Differentiability of projection and applications, E. Casas Ed. Marcel Dekker, New York. Lect. Notes Pure Appl. Math. 174 (1996) 231-240. | Zbl
and ,[11] Sensitivity analysis of unilateral problems in and applications. Numer. Funct. Anal. Optim. 14 (1993) 125-143. | Zbl
and ,[12] Introduction to Shape Optimization, Shape Sensitivity Analysis. Springer-Verlag, New York, Springer Ser. Comput. Math. 16 (1992). | MR | Zbl
and ,[13] Mathematical Modelling of Rods, P.G. Ciarlet and J.L Lions Eds. North-Holland, Amsterdam, Handb. Numer. Anal. 4 (1996) 487-974. | Zbl
and ,[14] Boundary Value Problems of Finite Elasticity. Springer Tracts Nat. Philos. 31 (1988). | MR | Zbl
,Cité par Sources :