Following the -convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for lagrangians with quadratic behavior is established.
Mots clés : discrete dynamics, variational integrators, gamma-convergence
@article{COCV_2004__10_4_656_0, author = {Maggi, Francesco and Morini, Massimiliano}, title = {A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {656--665}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004025}, mrnumber = {2111086}, zbl = {1099.37064}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004025/} }
TY - JOUR AU - Maggi, Francesco AU - Morini, Massimiliano TI - A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 656 EP - 665 VL - 10 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004025/ DO - 10.1051/cocv:2004025 LA - en ID - COCV_2004__10_4_656_0 ER -
%0 Journal Article %A Maggi, Francesco %A Morini, Massimiliano %T A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 656-665 %V 10 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2004025/ %R 10.1051/cocv:2004025 %G en %F COCV_2004__10_4_656_0
Maggi, Francesco; Morini, Massimiliano. A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 656-665. doi : 10.1051/cocv:2004025. http://www.numdam.org/articles/10.1051/cocv:2004025/
[1] Teoremi di semicontinuitá nel Calcolo delle Variazioni. Istituto Nazionale di Alta Matematica (1968-1969).
,[2] On lower semicontinuity of integral functionals. I. SIAM J. Control Optim. 15 (1977) 521-538. | MR | Zbl
,[3] Discrete Mechanics and variational integrators. Acta Numerica 10 (2001) 357-514. | MR | Zbl
and ,[4] On the -convergence of discrete dynamics and variational integrators. J. Nonlinear Sci. 14 (2004) 279-296. | MR | Zbl
and ,Cité par Sources :