In this article we apply the optimal and the robust control theory to the sine-Gordon equation. In our case the control is given by the boundary conditions and we work in a finite time horizon. We present at the beginning the optimal control problem and we derive a necessary condition of optimality and we continue by formulating a robust control problem for which existence and uniqueness of solutions are derived.
Mots-clés : robust control, sine-Gordon equation, energy estimates, saddle point
@article{COCV_2004__10_4_553_0, author = {Petcu, Madalina and Temam, Roger}, title = {Control for the {Sine-Gordon} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {553--573}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004020}, mrnumber = {2111080}, zbl = {1087.49004}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004020/} }
TY - JOUR AU - Petcu, Madalina AU - Temam, Roger TI - Control for the Sine-Gordon equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 553 EP - 573 VL - 10 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004020/ DO - 10.1051/cocv:2004020 LA - en ID - COCV_2004__10_4_553_0 ER -
%0 Journal Article %A Petcu, Madalina %A Temam, Roger %T Control for the Sine-Gordon equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 553-573 %V 10 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2004020/ %R 10.1051/cocv:2004020 %G en %F COCV_2004__10_4_553_0
Petcu, Madalina; Temam, Roger. Control for the Sine-Gordon equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 553-573. doi : 10.1051/cocv:2004020. http://www.numdam.org/articles/10.1051/cocv:2004020/
[1] On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1 (1990) 303-325. | Zbl
and ,[2] Nonlinear Fiber Optics. 2nd ed., Academic, San Diego, California (1995). | Zbl
,[3] A general framework for robust control in fluid mechanics. Physica D 138 (2000) 360-392. | MR | Zbl
, and ,[4] Nonlinear Optics. Academic, Boston (1992).
,[5] Convex Analysis and Variational Problems. Classics. Appl. Math. 28 (1999). | MR | Zbl
and ,[6] Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65 (2000) 249-272. | MR | Zbl
,[7] Optimal control of stationary, Iow Mach number, highly nonisothermal, viscous flows. ESAIM: COCV 5 (2000) 477-500. | Numdam | MR | Zbl
and ,[8] Linear robust control. Pretice-Hall (1995).
and ,[9] Robust control of the Kuramoto-Sivashinsky equation. Dynam. Cont. Discrete Impuls Systems B 8 (2001) 315-338. | MR | Zbl
and ,[10] Problèmes aux limites dans les equations aux dérivées partielles. Presses de l'Université de Montreal (1965), reedited in 2002 as part of [11]. | Zbl
,[11] Selected work. 3 volumes, EDP Sciences, Paris, France (2003).
,[12] Attractors for reaction-diffusion equations; Existence and estimate of their dimension. Appl. Anal. 25 (1987) 101-147. | MR | Zbl
,[13] Compact sets in space . Ann. Mat. Pura Appl. 4 (1987) 67-96. | MR | Zbl
,[14] Navier-Stokes Equations. North-Holland, Amsterdam (1977), reedited in the series: AMS Chelsea, AMS Providence (2001). | Zbl
,[15] Infinite Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68, Second augmented edition, Springer-Verlag, New York (1997). | MR | Zbl
,Cité par Sources :