Using some results proved in De Pascale and Pratelli [Calc. Var. Partial Differ. Equ. 14 (2002) 249-274] (and De Pascale et al. [Bull. London Math. Soc. 36 (2004) 383-395]) and a suitable interpolation technique, we show that the transport density relative to an source is also an function for any .
Mots clés : transport density, interpolation, summability
@article{COCV_2004__10_4_549_0, author = {Pascale, Luigi De and Pratelli, Aldo}, title = {Sharp summability for {Monge} transport density via interpolation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {549--552}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004019}, mrnumber = {2111079}, zbl = {1072.49033}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004019/} }
TY - JOUR AU - Pascale, Luigi De AU - Pratelli, Aldo TI - Sharp summability for Monge transport density via interpolation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 549 EP - 552 VL - 10 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004019/ DO - 10.1051/cocv:2004019 LA - en ID - COCV_2004__10_4_549_0 ER -
%0 Journal Article %A Pascale, Luigi De %A Pratelli, Aldo %T Sharp summability for Monge transport density via interpolation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 549-552 %V 10 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2004019/ %R 10.1051/cocv:2004019 %G en %F COCV_2004__10_4_549_0
Pascale, Luigi De; Pratelli, Aldo. Sharp summability for Monge transport density via interpolation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 549-552. doi : 10.1051/cocv:2004019. http://www.numdam.org/articles/10.1051/cocv:2004019/
[1] Mathematical Aspects of Evolving Interfaces. Lect. Notes Math. 1812 (2003) 1-52. | MR | Zbl
,[2] Existence and stability results in the theory of optimal transportation. Lect. Notes Math. 1813 (2003) 123-160. | MR | Zbl
and ,[3] Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3 (2001) 139-168. | MR | Zbl
and ,[4] Shape Optimization Solutions via Monge-Kantorovich Equation. C. R. Acad. Sci. Paris I 324 (1997) 1185-1191. | MR | Zbl
, and ,[5] Integral Estimates for Transport Densities. Bull. London Math. Soc. 36 (2004) 383-395. | MR | Zbl
, and ,[6] Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ. 14 (2002) 249-274. | MR | Zbl
and ,[7] Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem. Mem. Amer. Math. Soc. 137 (1999). | MR | Zbl
and ,[8] Uniqueness and transport density in Monge's mass transportation problem. Calc. Var. Partial Differ. Equ. 15 (2002) 81-113. | Zbl
and ,[9] The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | MR | Zbl
and ,[10] Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag (1993). | MR | Zbl
,Cité par Sources :