The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.
Mots-clés : variational data assimilation, soil water movement, quasilinear parabolic problem, solvability, numerical analysis
@article{COCV_2004__10_3_331_0, author = {Le Dimet, Fran\c{c}ois-Xavier and Shutyaev, Victor Petrovich and Wang, Jiafeng and Mu, Mu}, title = {The problem of data assimilation for soil water movement}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {331--345}, publisher = {EDP-Sciences}, volume = {10}, number = {3}, year = {2004}, doi = {10.1051/cocv:2004009}, mrnumber = {2084327}, zbl = {1071.76054}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004009/} }
TY - JOUR AU - Le Dimet, François-Xavier AU - Shutyaev, Victor Petrovich AU - Wang, Jiafeng AU - Mu, Mu TI - The problem of data assimilation for soil water movement JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 331 EP - 345 VL - 10 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004009/ DO - 10.1051/cocv:2004009 LA - en ID - COCV_2004__10_3_331_0 ER -
%0 Journal Article %A Le Dimet, François-Xavier %A Shutyaev, Victor Petrovich %A Wang, Jiafeng %A Mu, Mu %T The problem of data assimilation for soil water movement %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 331-345 %V 10 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2004009/ %R 10.1051/cocv:2004009 %G en %F COCV_2004__10_3_331_0
Le Dimet, François-Xavier; Shutyaev, Victor Petrovich; Wang, Jiafeng; Mu, Mu. The problem of data assimilation for soil water movement. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 3, pp. 331-345. doi : 10.1051/cocv:2004009. http://www.numdam.org/articles/10.1051/cocv:2004009/
[1] Calculation of the diffusion coefficient in a nonlinear parabolic equation. Preprint of the Department of Numerical Mathematics, USSR Acad. Sci., Moscow (1988), No. 200. | MR
and ,[2] On the solvability and numerical solution of data assimilation problems. Russ. J. Numer. Anal. Math. Modelling 8 (1986) 1-16. | MR | Zbl
and ,[3] Quasilinear elliptic-parabolic differential equations. Math. Zeitschrift 183 (1983) 311-341. | MR | Zbl
and ,[4] Assimilation variationnelle de données en océanographie et réduction de la dimension de l'espace de contrôle. Équations aux Dérivées Partielles et Applications (Articles dédiés à Jacques-Louis Lions) (1998) 205-219. | Zbl
, and ,[5] Development of a four-dimensional variational analysis system using the adjoint method at GLA. Part I: Dynamics. Mon. Wea. Rev. 120 (1992) 1661-1673.
and ,[6] Variational four-dimensional analysis using quasigeostrophic constraints. Mon. Wea. Rev. 115 (1987) 998-1008.
,[7] Some numerical experiments with variable storage quasi-Newton algorithms. Math. Program. B25 (1989) 408-435. | MR | Zbl
and ,[8] Practical Optimization. Academic Press (1981). | MR | Zbl
, and ,[9] Geometric Theory of Semilinear Parabolic Equations. New York, Springer (1981). | MR | Zbl
,[10] A survey on solvability of boundary value problems for uniformly elliptic and parabolic equations of the second order. Uspekhi Math. Nauk 41 (1986) 59-83. | MR | Zbl
and ,[11] Linear and Quasilinear Parabolic Equations. Moscow, Nauka (1967).
, and ,[12] A priori Estimates and Existence Theorems for Nonlinear Parabolic Equations. Novosibirsk, Nauka (1982).
,[13] Méthodes de second ordre en assimilation de données. Équations aux Dérivées Partielles et Applications (Articles dédiés à Jacques-Louis Lions) (1998) 623-639. | MR | Zbl
and ,[14] Sensitivity analysis in variational data assimilation. J. Met. Soc. Japan 75 (1997) 245-255.
, and ,[15] Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38 (1986) 97-110.
and ,[16] Zh. Lei and Sh. Yang, The Dynamics of Soil Water. Tsinghua University Press (1986).
[17] Four-dimensional variational data assimilation experiments with a multilevel semi-Lagrangian semi-implicit general circulation model. Mon. Wea. Rev. 122 (1994) 966-983.
, , , , , and ,[18] Optimal Control of Systems Governed by Partial Differential Equations. New York, Springer (1970). | MR | Zbl
,[19] Some Methods for Solving Nonlinear Problems. Moscow, Mir (1972).
,[20] Problémes aux limites non homogènes et applications. Paris, Dunod (1968). | Zbl
and ,[21] Adjoint Equations and Perturbation Algorithms in Nonlinear Problems. CRC Press Inc. New York (1996). | MR
, and ,[22] Global smooth solutions of two-dimensional Euler equations. Chin. Sci. Bull. 35 (1990) 1895-1900. | MR | Zbl
,[23] Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev. 120 (1992) 1433-1446.
, , and ,[24] Method of introducing a parameter for study of evolution equations. Uspehi Math. Nauk 33 (1978) 7-76. | MR | Zbl
and ,[25] A variational initialization method for the fields of meteorological elements. Meteorol. Gidrol. 11 (1976) 1-11.
and ,[26] Some properties of the control operator in the problem of data assimilation and iterative algorithms. Russ. J. Numer. Anal. Math. Modelling 10 (1995) 357-371. | MR | Zbl
,[27] Qualitative Theory of Parabolic Equations. Utrecht, VSP Publishers (1997). | MR | Zbl
, and ,[28] Asymptotical behaviour of solutions of mathematical physics. Partial Diff. Eqs. (1970) 96-110.
and ,[29] Incomplete observations and control of gravity waves in variational data assimilation. Tellus A 44 (1992) 273-296.
, and ,Cité par Sources :