We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton-Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.
Mots clés : hysteresis, optimal control, dynamic programming, viscosity solutions
@article{COCV_2004__10_2_271_0, author = {Bagagiolo, Fabio}, title = {Viscosity solutions for an optimal control problem with {Preisach} hysteresis nonlinearities}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {271--294}, publisher = {EDP-Sciences}, volume = {10}, number = {2}, year = {2004}, doi = {10.1051/cocv:2004007}, mrnumber = {2083488}, zbl = {1068.49024}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004007/} }
TY - JOUR AU - Bagagiolo, Fabio TI - Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 271 EP - 294 VL - 10 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004007/ DO - 10.1051/cocv:2004007 LA - en ID - COCV_2004__10_2_271_0 ER -
%0 Journal Article %A Bagagiolo, Fabio %T Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 271-294 %V 10 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2004007/ %R 10.1051/cocv:2004007 %G en %F COCV_2004__10_2_271_0
Bagagiolo, Fabio. Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 271-294. doi : 10.1051/cocv:2004007. http://www.numdam.org/articles/10.1051/cocv:2004007/
[1] An infinite horizon optimal control problem for some switching systems. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 443-462. | MR | Zbl
,[2] Dynamic programming for some optimal control problems with hysteresis. NoDEA Nonlinear Differ. Equ. Appl. 9 (2002) 149-174. | MR | Zbl
,[3] Optimal control of finite horizon type for a multidimensional delayed switching system. Department of Mathematics, University of Trento, Preprint No. 647 (2003). | MR | Zbl
,[4] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). | Zbl
and ,[5] Fully nonlinear Neumann type boundary conditions for first-order Hamilton-Jacobi equations. Nonlinear Anal. 16 (1991) 143-153. | Zbl
and ,[6] Optimal control of dynamic systems with hysteresis. Int. J. Control 73 (2000) 22-28. | MR | Zbl
and ,[7] Dynamic programming for systems with hysteresis. Physica B Condensed Matter 306 (2001) 200-205.
and ,[8] ODE control problems including the Preisach hysteresis operator: Necessary optimality conditions, in Dynamic Economic Models and Optimal Control, G. Feichtinger Ed., North-Holland, Amsterdam (1992) 51-68. | MR
,[9] Hysteresis and Phase Transitions. Springer, Berlin (1997). | MR | Zbl
and ,[10] Hamilton-Jacobi equations in infinite dimensions. Part I: Uniqueness of solutions. J. Funct. Anal. 62 (1985) 379-396. | MR | Zbl
and ,[11] Magnetic Hysteresis. IEEE Press, New York (1999).
,[12] Systems with Hysteresis. Springer, Berlin (1989). Russian Ed. Nauka, Moscow (1983). | MR
and ,[13] Convexity, Hysteresis and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo (1996).
,[14] A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 105-135. | Numdam | MR | Zbl
,[15] Optimal control of a bioreactor with modal switching. Math. Models Methods Appl. Sci. 11 (2001) 933-949. | MR | Zbl
, and ,[16] Neumann type boundary condition for Hamilton-Jacobi equations. Duke Math. J. 52 (1985) 793-820. | MR | Zbl
,[17] Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: the case of bounded stochastic evolutions. Acta Math. 161 (1988) 243-278. | MR | Zbl
,[18] Mathematical Models of Hysteresis. Springer, New York (1991). | MR | Zbl
,[19] Optimal control of hysteresis in smart actuators: a viscosity solutions approach. Center for Dynamics and Control of Smart Actuators, preprint (2002). | Zbl
and ,[20] Adaptive Control of Systems with Actuator and Sensor Nonlinearities. John Wiley & Sons, New York (1996). | MR | Zbl
and ,[21] Differential Models of Hysteresis. Springer, Heidelberg (1994). | MR | Zbl
,Cité par Sources :