Let be a borelian function and consider the following problems
Mots clés : Lipschitz, regularity, non-coercive, discontinuous, calculus of variations
@article{COCV_2004__10_2_201_0, author = {Mariconda, Carlo and Treu, Giulia}, title = {A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {201--210}, publisher = {EDP-Sciences}, volume = {10}, number = {2}, year = {2004}, doi = {10.1051/cocv:2004004}, mrnumber = {2083483}, zbl = {1072.49012}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2004004/} }
TY - JOUR AU - Mariconda, Carlo AU - Treu, Giulia TI - A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 201 EP - 210 VL - 10 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2004004/ DO - 10.1051/cocv:2004004 LA - en ID - COCV_2004__10_2_201_0 ER -
%0 Journal Article %A Mariconda, Carlo %A Treu, Giulia %T A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 201-210 %V 10 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2004004/ %R 10.1051/cocv:2004004 %G en %F COCV_2004__10_2_201_0
Mariconda, Carlo; Treu, Giulia. A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 201-210. doi : 10.1051/cocv:2004004. http://www.numdam.org/articles/10.1051/cocv:2004004/
[1] Non-occurrence of gap for one-dimensional autonomous functionals. Ser. Adv. Math. Appl. Sci. Calculus of variations, homogenization and continuum mechanics 18 (1993) 1-17. | MR | Zbl
and ,[2] Integral representation of functionals defined on curves of . Proc. R. Soc. Edinb. Sect. A 128 (1998) 193-217. | MR | Zbl
, and ,[3] Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. Appl. 142 (1989) 301-316. | MR | Zbl
, and ,[4] Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes Math. Ser. 207 (1989). | MR | Zbl
,[5] The classical problem of the calculus of variations in the autonomous case: Relaxation and lipschitzianity of solutions. Preprint (2001). | MR | Zbl
,[6] Autonomous Integral Functionals with Discontinuous Nonconvex Integrands: Lipschitz Regularity of Minimizers, DuBois-Reymond Necessary Conditions, and Hamilton-Jacobi Equations. Preprint (2002). | MR | Zbl
and ,[7] Convex analysis and variational problems. Classics Appl. Math. 28 (1999). | MR | Zbl
and ,[8] Lipschitz regularity of the minimizers of autonomous integral functionals with discontinuous non-convex integrands of slow growth. Dipartimento di Matematica pura e applicata, Università di Padova 10 (2003) preprint. | MR | Zbl
and ,[9] Functional analysis. International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York (1991). | MR | Zbl
,Cité par Sources :