Newton and conjugate gradient for harmonic maps from the disc into the sphere
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 142-167.

We compute numerically the minimizers of the Dirichlet energy

E(u)=1 2 B 2 |u| 2 dx
among maps u:B 2 S 2 from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous P 1 finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned projected gradient). In order to improve the convergence, we generalize to manifolds the classical Newton and conjugate gradient algorithms. We give a proof of the quadratic convergence of the Newton algorithm for manifolds in a general setting.

DOI : 10.1051/cocv:2003040
Classification : 58E20, 78M10, 65N30, 90C53
Mots-clés : harmonic maps, finite elements, mesh-refinement, Sobolev gradient, Newton algorithm, conjugate gradient
@article{COCV_2004__10_1_142_0,
     author = {Pierre, Morgan},
     title = {Newton and conjugate gradient for harmonic maps from the disc into the sphere},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {142--167},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {1},
     year = {2004},
     doi = {10.1051/cocv:2003040},
     mrnumber = {2084259},
     zbl = {1076.65062},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2003040/}
}
TY  - JOUR
AU  - Pierre, Morgan
TI  - Newton and conjugate gradient for harmonic maps from the disc into the sphere
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 142
EP  - 167
VL  - 10
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2003040/
DO  - 10.1051/cocv:2003040
LA  - en
ID  - COCV_2004__10_1_142_0
ER  - 
%0 Journal Article
%A Pierre, Morgan
%T Newton and conjugate gradient for harmonic maps from the disc into the sphere
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 142-167
%V 10
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2003040/
%R 10.1051/cocv:2003040
%G en
%F COCV_2004__10_1_142_0
Pierre, Morgan. Newton and conjugate gradient for harmonic maps from the disc into the sphere. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 142-167. doi : 10.1051/cocv:2003040. http://www.numdam.org/articles/10.1051/cocv:2003040/

[1] F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708-1726. | Zbl

[2] F. Alouges and B.D. Coleman, Numerical bifurcation of equilibria of nematic crystals between non-co-axial cylinders. Math. Models Methods Appl. Sci. 11 (2001) 459-473. | Zbl

[3] D. Braess, Finite elements, in Theory, fast solvers, and applications in solid mechanics. Translated from the 1992 German edition by Larry L. Schumaker. Cambridge University Press, Cambridge, 2nd edn. (2001). | MR | Zbl

[4] H. Brézis, Analyse fonctionnelle. Masson (1996). | MR | Zbl

[5] H. Brézis and J.-M. Coron, Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983) 203-215. | Zbl

[6] K.-C. Chang, W.-Y. Ding and R. Ye, Finite-time blow up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36 (1992) 507-515. | Zbl

[7] P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson (1988). | Zbl

[8] P.-G. De Gennes and J. Prost, The physics of liquid crystals. Clarendon Press, Oxford (1993).

[9] R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1994) 149-154. | Zbl

[10] M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. I. Springer-Verlag, Berlin (1998). | MR | Zbl

[11] M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. II. Springer-Verlag, Berlin (1998). | MR | Zbl

[12] R.M. Hardt, Singularities of harmonic maps. Bull. Amer. Math. Soc. (N.S.) 34 (1997) 15-34. | Zbl

[13] E. Hebey, Introduction à l'analyse non linéaire sur les variétés. Diderot Editeur Arts et Sciences (1987). | Zbl

[14] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 519-524. | Zbl

[15] F. Hélein, Symétries dans les problèmes variationnels et applications harmoniques. Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma (1998).

[16] J. Jost, Harmonic mappings betwenn surfaces. Springer-verlag, Lecture Notes in Math. 1062 (1984). | MR | Zbl

[17] W.P.A Klingenberg, Riemannian Geometry. Walter de Gruyter (1995). | MR | Zbl

[18] E. Kuwert, Minimizing the energy of maps from a surface into a 2-sphere with prescribed degree and boundary values. Manuscripta Math. 83 (1994) 31-38. | Zbl

[19] L. Lemaire, Applications harmoniques de surfaces riemanniennes. J. Differ. Geom. 13 (1978) 51-78. | Zbl

[20] A. Lichnewsky, Une méthode de gradient conjugué sur des variétés : application à certains problèmes de valeurs propres non linéaires. Numer. Funct. Anal. Optim. 1 (1979) 515-560. | Zbl

[21] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2. Rev. Mat. Iberoamericana 1 (1985) 45-121. | Zbl

[22] C.B. Morrey, Multiple integrals in the calculus of variations. Springer, New York (1966). | MR | Zbl

[23] J.W. Neuberger, Sobolev gradients and boundary conditions for partial differential equations, in Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), Amer. Math. Soc., Providence, RI. Contemp. Math. 204 (1997) 171-181 | Zbl

[24] E. Polak, Optimization, Appl. Math. Sci. 124 (1997). | Zbl

[25] J. Qing, Remark on the Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. R. Soc. Edinb. 122A (1992) 63-67. | Zbl

[26] J. Qing, Boundary regularity of weakly harmonic maps from surfaces. J. Funct. Anal. 114 (1993) 63-67. | Zbl

[27] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps. J. Dif. Geom. 18 (1983) 253-268. | Zbl

[28] J.R. Shewchuk, Triangle: engineering a 2d quality mesh generator and delaunay triangulator. http://www-2.cs.cmu.edu/quake/triangle.html.

[29] J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain. http://www-2.cs.cmu.edu/jrs/jrspapers.html#cg (1994).

[30] A. Soyeur, The Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. R. Soc. Edinb. 113A (1989) 229-234. | Zbl

Cité par Sources :