Turnpike theorems deal with the optimality of trajectories reaching a singular solution, in calculus of variations or optimal control problems. For scalar calculus of variations problems in infinite horizon, linear with respect to the derivative, we use the theory of viscosity solutions of Hamilton-Jacobi equations to obtain a unique characterization of the value function. With this approach, we extend for the scalar case the classical result based on Green theorem, when there is uniqueness of the singular solution. We provide a new necessary and sufficient condition for turnpike optimality, even in the presence of multiple singular solutions.
Mots-clés : calculus of variations, infinite horizon, Hamilton-Jacobi equation, viscosity solutions, turnpike
@article{COCV_2004__10_1_123_0, author = {Rapaport, Alain and Cartigny, Pierre}, title = {Turnpike theorems by a value function approach}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {123--141}, publisher = {EDP-Sciences}, volume = {10}, number = {1}, year = {2004}, doi = {10.1051/cocv:2003039}, mrnumber = {2084258}, zbl = {1068.49016}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003039/} }
TY - JOUR AU - Rapaport, Alain AU - Cartigny, Pierre TI - Turnpike theorems by a value function approach JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 123 EP - 141 VL - 10 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003039/ DO - 10.1051/cocv:2003039 LA - en ID - COCV_2004__10_1_123_0 ER -
%0 Journal Article %A Rapaport, Alain %A Cartigny, Pierre %T Turnpike theorems by a value function approach %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 123-141 %V 10 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2003039/ %R 10.1051/cocv:2003039 %G en %F COCV_2004__10_1_123_0
Rapaport, Alain; Cartigny, Pierre. Turnpike theorems by a value function approach. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 123-141. doi : 10.1051/cocv:2003039. http://www.numdam.org/articles/10.1051/cocv:2003039/
[1] Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris-Heidelberg-New York (1994). | MR | Zbl
,[2] Singular Optimal Control Problems. Academic Press, London (1975). | MR | Zbl
and ,[3] Optimality in Infinite Horizon Variational Problems under Signs Conditions. J. Optim. Theory Appl. 106 (2000) 411-419. | Zbl
and ,[4] First-Order Necessary Conditions for the Infinite-Horizon Variational Problems. J. Optim. Theory Appl. 88 (1996) 339-364. | Zbl
and ,[5] On a Sufficient Transversality Condition for Infinite Horizon Optimal Control Problems. Automatica 39 (2003) 1007-1010. | Zbl
and ,[6] Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1976). | MR | Zbl
,[7] Some Variational Problems Arising from Mathematical Economics. Springer-Verlag, Lecture Notes in Math. 1330 (1986). | MR | Zbl
,[8] A New Sufficient Condition for Most Rapid Approach Paths. J. Optim. Theory Appl. 54 (1987). | MR | Zbl
and ,[9] Viscosity Solutions of Hamilton-Jacobi Equations. Trans. Americ. Math. 277 (1983) 1-42. | Zbl
and ,[10] Extremization of Linear Integrals by Green's Theorem, Optimization Technics, G. Leitmann Ed. Academic Press, New York (1962) 69-98.
,[11] Théorème de l'autoroute et équation d'Hamilton-Jacobi. C.R. Acad. Sci. 335 (2002) 1091-1094. | Zbl
and ,Cité par Sources :