Turnpike theorems by a value function approach
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 123-141.

Turnpike theorems deal with the optimality of trajectories reaching a singular solution, in calculus of variations or optimal control problems. For scalar calculus of variations problems in infinite horizon, linear with respect to the derivative, we use the theory of viscosity solutions of Hamilton-Jacobi equations to obtain a unique characterization of the value function. With this approach, we extend for the scalar case the classical result based on Green theorem, when there is uniqueness of the singular solution. We provide a new necessary and sufficient condition for turnpike optimality, even in the presence of multiple singular solutions.

DOI : 10.1051/cocv:2003039
Classification : 34H05, 49K05, 49L25
Mots clés : calculus of variations, infinite horizon, Hamilton-Jacobi equation, viscosity solutions, turnpike
@article{COCV_2004__10_1_123_0,
     author = {Rapaport, Alain and Cartigny, Pierre},
     title = {Turnpike theorems by a value function approach},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {123--141},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {1},
     year = {2004},
     doi = {10.1051/cocv:2003039},
     mrnumber = {2084258},
     zbl = {1068.49016},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2003039/}
}
TY  - JOUR
AU  - Rapaport, Alain
AU  - Cartigny, Pierre
TI  - Turnpike theorems by a value function approach
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 123
EP  - 141
VL  - 10
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2003039/
DO  - 10.1051/cocv:2003039
LA  - en
ID  - COCV_2004__10_1_123_0
ER  - 
%0 Journal Article
%A Rapaport, Alain
%A Cartigny, Pierre
%T Turnpike theorems by a value function approach
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 123-141
%V 10
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2003039/
%R 10.1051/cocv:2003039
%G en
%F COCV_2004__10_1_123_0
Rapaport, Alain; Cartigny, Pierre. Turnpike theorems by a value function approach. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 123-141. doi : 10.1051/cocv:2003039. http://www.numdam.org/articles/10.1051/cocv:2003039/

[1] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris-Heidelberg-New York (1994). | MR | Zbl

[2] D.J. Bell and D.H. Jacobson, Singular Optimal Control Problems. Academic Press, London (1975). | MR | Zbl

[3] J. Blot and P. Cartigny, Optimality in Infinite Horizon Variational Problems under Signs Conditions. J. Optim. Theory Appl. 106 (2000) 411-419. | Zbl

[4] J. Blot and P. Michel, First-Order Necessary Conditions for the Infinite-Horizon Variational Problems. J. Optim. Theory Appl. 88 (1996) 339-364. | Zbl

[5] P. Cartigny and P. Michel, On a Sufficient Transversality Condition for Infinite Horizon Optimal Control Problems. Automatica 39 (2003) 1007-1010. | Zbl

[6] C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1976). | MR | Zbl

[7] I. Ekeland, Some Variational Problems Arising from Mathematical Economics. Springer-Verlag, Lecture Notes in Math. 1330 (1986). | MR | Zbl

[8] R.F. Hartl and G. Feichtinger, A New Sufficient Condition for Most Rapid Approach Paths. J. Optim. Theory Appl. 54 (1987). | MR | Zbl

[9] M.G. Crandall and P.-L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations. Trans. Americ. Math. 277 (1983) 1-42. | Zbl

[10] A. Miele, Extremization of Linear Integrals by Green's Theorem, Optimization Technics, G. Leitmann Ed. Academic Press, New York (1962) 69-98.

[11] A. Rapaport and P. Cartigny, Théorème de l'autoroute et équation d'Hamilton-Jacobi. C.R. Acad. Sci. 335 (2002) 1091-1094. | Zbl

Cité par Sources :