The problem of invariant output tracking is considered: given a control system admitting a symmetry group , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of . Invariant output errors are defined as a set of scalar invariants of ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required “symmetry-preserving” feedback.
Mots clés : symmetries, invariants, nonlinear control, output tracking, decoupling
@article{COCV_2004__10_1_1_0, author = {Martin, Philippe and Rouchon, Pierre and Rudolph, Joachim}, title = {Invariant tracking}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--13}, publisher = {EDP-Sciences}, volume = {10}, number = {1}, year = {2004}, doi = {10.1051/cocv:2003037}, mrnumber = {2084252}, zbl = {1088.93016}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003037/} }
TY - JOUR AU - Martin, Philippe AU - Rouchon, Pierre AU - Rudolph, Joachim TI - Invariant tracking JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 1 EP - 13 VL - 10 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003037/ DO - 10.1051/cocv:2003037 LA - en ID - COCV_2004__10_1_1_0 ER -
%0 Journal Article %A Martin, Philippe %A Rouchon, Pierre %A Rudolph, Joachim %T Invariant tracking %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 1-13 %V 10 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2003037/ %R 10.1051/cocv:2003037 %G en %F COCV_2004__10_1_1_0
Martin, Philippe; Rouchon, Pierre; Rudolph, Joachim. Invariant tracking. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 1-13. doi : 10.1051/cocv:2003037. http://www.numdam.org/articles/10.1051/cocv:2003037/
[1] Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136 (1996) 21-99. | MR | Zbl
, , and ,[2] Tracking for fully actuated mechanical systems: A geometric framework. Automatica 35 (1999) 17-34. | MR | Zbl
and ,[3] Filtrations in feedback synthesis: Part I - Systems and feedbacks. Forum Math. 10 (1998) 147-174. | Zbl
and ,[4] Dynamic decoupling for right invertible nonlinear systems. Systems Control Lett. 8 (1988) 345-349. | MR | Zbl
and ,[5] Representations of symmetric linear dynamical systems. SIAM J. Control Optim. 31 (1993) 1267-1293. | MR | Zbl
and ,[6] The structure of nonlinear systems possessing symmetries. IEEE Trans. Automat. Control 30 (1985) 248-258. | MR | Zbl
and ,[7] Nonlinear Control Systems, 2nd Edition. Springer, New York (1989). | MR
,[8] Symmetries of nonlinear control systems and their symbols, in Canadian Math. Conf. Proceed., Vol. 25 (1998) 183-198. | MR | Zbl
,[9] Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J. Control Optim. 35 (1997) 901-929. | MR | Zbl
and ,[10] Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1994). | MR | Zbl
and ,[11] Flat systems1997) 211-264. Plenary lectures and Mini-courses. | MR | Zbl
, and ,[12] Right-invertibility for a class of nonlinear control systems: A geometric approach. Systems Control Lett. 7 (1986) 125-132. | MR | Zbl
,[13] Nonlinear Dynamical Control Systems. Springer-Verlag (1990). | MR | Zbl
and ,[14] Equivalence, Invariants and Symmetry. Cambridge University Press (1995). | MR | Zbl
,[15] Classical Invariant Theory. Cambridge University Press (1999). | MR | Zbl
,[16] On local right-invertibility of nonlinear control system. Control Theory Adv. Tech. 4 (1988) 325-348. | MR
and ,[17] Nonlinearizable single-input control systems do not admit stationary symmetries. Systems Control Lett. 46 (2002) 1-16. | MR | Zbl
and ,[18] Invariant tracking and stabilization: problem formulation and examples. Springer, Lecture Notes in Control and Inform. Sci. 246 (1999) 261-273. | MR | Zbl
and ,[19] Symmetries in optimal control. SIAM J. Control Optim. 25 (1987) 245-259. | MR | Zbl
,[20] Flatness-based control of a nonholonomic mobile platform. Z. Angew. Math. Mech. 78 (1998) 43-46. | Zbl
,Cité par Sources :