We study the sequence , which is solution of in an open bounded set of and on , when tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the -function , and prove a non-existence result.
Mots-clés : elliptic equation, Orlicz space, measure, capacity
@article{COCV_2003__9__317_0, author = {Fiorenza, Alberto and Prignet, Alain}, title = {Orlicz capacities and applications to some existence questions for elliptic {PDEs} having measure data}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {317--341}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003015}, mrnumber = {1966536}, zbl = {1075.35012}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003015/} }
TY - JOUR AU - Fiorenza, Alberto AU - Prignet, Alain TI - Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 317 EP - 341 VL - 9 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003015/ DO - 10.1051/cocv:2003015 LA - en ID - COCV_2003__9__317_0 ER -
%0 Journal Article %A Fiorenza, Alberto %A Prignet, Alain %T Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 317-341 %V 9 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2003015/ %R 10.1051/cocv:2003015 %G en %F COCV_2003__9__317_0
Fiorenza, Alberto; Prignet, Alain. Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 317-341. doi : 10.1051/cocv:2003015. http://www.numdam.org/articles/10.1051/cocv:2003015/
[1] Function spaces and potential theory. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 314 (1996). | MR | Zbl
and ,[2] Bessel potentials in Orlicz spaces. Rev. Mat. Univ. Complut. Madrid 10 (1997) 55-79. | MR | Zbl
,[3] Some developments of Strongly Nonlinear Potential Theory. Libertas Math. 19 (1999) 155-170. | MR | Zbl
,[4] Capacités dans les espaces d'Orlicz. Ann. Sci. Math. Québec 18 (1994) 1-23. | Zbl
and ,[5] Singularités éliminables pour des équations semi-linéaires. Ann. Inst. Fourier (Grenoble) 34 (1984) 185-206. | Numdam | MR | Zbl
and ,[6] An theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 240-273. | Numdam | MR | Zbl
, , , , and ,[7] A semilinear elliptic equation in . Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975) 523-555. | Numdam | MR | Zbl
, and ,[8] Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations 17 (1992) 641-655. | MR | Zbl
and ,[9] Nonlinear elliptic equations involving measures, in Contributions to nonlinear partial differential equations (Madrid, 1981). Pitman, Boston, Mass.-London, Res. Notes in Math. 89 1983) 82-89. | MR | Zbl
,[10] Theory of Capacities, Ann. Inst. Fourier (Grenoble) 5 (1953-1954) 131-295 (Ch. 1, Thm 4.1, p. 142). | EuDML | Numdam | MR | Zbl
,[11] Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa CL. Sci. 28 (1999) 741-808. | EuDML | Numdam | MR | Zbl
, , and ,[12] Orlicz-Sobolev spaces and embedding theorems. J. Funct. Anal. 8 (1971) 52-75. | MR | Zbl
and ,[13] An inequality for Jensen Means. Nonlinear Anal. 16 (1991) 191-198. | MR | Zbl
,[14] Resolution of a semilinear equation in . Proc. Roy. Soc. Edinburgh 96 (1984) 275-288. | MR | Zbl
and ,[15] Interpolation of Orlicz spaces. Studia Math. 60 (1977) 33-59. | EuDML | MR | Zbl
and ,[16] Weighted inequalities in Lorentz and Orlicz spaces. World Scientific (1991). | MR | Zbl
and ,[17] Convex functions and Orlicz Spaces. Noordhoff Ltd. (1961). | MR | Zbl
and ,[18] Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97-107. | EuDML | Numdam | MR | Zbl
and ,[19] Orlicz Spaces and Interpolation. Dep. de Matematica Univ. Estadual de Campinas, Campinas, Brazil (1989). | MR | Zbl
,[20] Coarea properties of Sobolev functions, in Proc. Function Spaces, Differential Operators and Nonlinear Analysis (The Hans Triebel Anniversary Volume). Birkhäuser, Basel (to appear). | MR | Zbl
,[21] Fine behavior of functions with gradient in a Lorentz space (in preparation).
, and ,[22] Nonlinear potential theory. Uspekhi Mat. Nauk 27 (1972) 67-138. English translation: Russian Math. Surveys 27 (1972) 71-148. | MR | Zbl
and ,[23] Nonexistence of solutions for some nonlinear elliptic equations involving measures. Proc. Roy. Soc. Edinburgh Ser. A 130 (2000) 167-187. | MR | Zbl
and ,[24] Interpolation with a parameter function. Math. Scand. 59 (1986) 199-222. | EuDML | MR | Zbl
,[25] Theory of Orlicz Spaces. Marcel Dekker (1991). | MR | Zbl
and ,[26] Hausdorff Measures. Cambridge University Press (1970). | MR | Zbl
,[27] Singular Integrals and Differentiability properties of functions. Princeton University Press (1970). | MR | Zbl
,Cité par Sources :